• Title/Summary/Keyword: instantaneous ignition temperature

Search Result 14, Processing Time 0.02 seconds

A Study on the Ignition Characteristics of Gasoline due to Variation in Octane Number (옥탄가 변화에 따른 가솔린의 발화특성에 관한 연구)

  • Kim, Hyeong Seok;Kim, Won Kil;Choi, Yu Jung;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • This study was conducted to assess the hazards of gasoline in relevance to the changes in octane numbers, and gasoline's spontaneous ignition temperature and instantaneous ignition temperature were measured. Spontaneous ignition temperature of regular gasoline was $301^{\circ}C$ for sample quantity of $100{\sim}125{\mu}{\ell}$. Spontaneous ignition temperature of middle gasoline was $380^{\circ}C$ for sample quantity of $125{\mu}{\ell}$ and that of premium gasoline was $400^{\circ}C$. As gasoline's octane numbers increased, their spontaneous ignition temperatures increased, and their instantaneous ignition temperature were almost identically $499^{\circ}C$ for sample quantity of $125{\mu}{\ell}$. In addition, activation energies of regular gasoline, middle gasoline, and premium gasoline were 10.48 Kcal/mol, 16.89 Kcal/mol, and 24.55 Kcal/mol respectively.

A Study on the Flash Point and Spontaneous Ignition Determination of Diethylene Glycol

  • Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • This study investigates the main factors of fire prevention, such as spontaneous ignition and flash point, while using Diehylene Glycol (DEG) as the antifreeze for automobile and industrial machines. Our results show the flash point of $142^{\circ}C$ and the minimum ignition temperature of $388^{\circ}C$ in the range of $130{\mu}{\ell}{\sim}150{\mu}{\ell}$. By increasing temperature to ignite in 1 second, an instantaneous ignition temperature of the sample is $569^{\circ}C$ in the sample amount of $140{\mu}{\ell}$.

Experimental study on the heat flux and heat transfer coefficient in a spark ignition engine (스파크 점화기관의 열유속 및 열전달 계수에 대한 실험적 연구)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1466-1474
    • /
    • 1997
  • In order to design and develop a spark ignition engine, many studies must be preceded about the characteristics of thermal flow. For measurement of transient wall temperature thin film thermocouples of Bendersky type were manufactured and these probes were fixed into the wall of combustion chamber. Surface wall temperatures were measured in experiments of various engine speeds. Transient heat fluxes were calculated from the wall temperature measurements. Pressure was measured from combustion chamber using pressure transducer and gas temperatures were calculated using the state equation of ideal gas. And instantaneous heat transfer coefficients were obtained. It will be the basic data for the formulae of instantaneous heat transfer coefficients.

A Study on Characteristics of Auto Ignition and Activation Energy of Ethylene Glycol and Diethylene Glycol (Ethylene Glycol과 Diethylene Glycol의 자연발화 특성과 활성화에너지에 관한 연구)

  • Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.16-22
    • /
    • 2016
  • Auto ignition characteristic is an important factor for handling combustible substance and fire prevention. This research studied about auto ignition characteristic and activation energy of Ethylene Glycol (EG) and Diethylene Glycol (DEG) by using ASTM D2155 type ignition temperature measuring apparatus. As the auto ignition temperatures, it was possible to get $434^{\circ}C$ for EG within sample amount range of $75{\sim}160{\mu}l$ and $387^{\circ}C$ for DEG within sample amount range of $130{\sim}150{\mu}l$. Also, it was possible to get $579^{\circ}C$ and $569^{\circ}C$ as instantaneous ignition temperatures with sample amount of $140{\mu}l$ for EG and DEG respectively. By using least square method from Semenov equation on measured ignition temperature and ignition delay time from this study, it was possible to calculate activation energy of EG as 25.41 Kcal/mol and DEG as 14.07 Kcal/mol. Therefore, it was possible to claim that DEG has more risk of auto ignition since the auto ignition temperature, instantaneous ignition temperature and activation energy of DEG is lower than EG.

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

Characteristic of Auto Ignition Temperature due to the Mixture Ratio of Ethylene Glycol and Water (Ethylene Glycol과 물의 혼합비에 따른 자연발화온도 특성)

  • Kim, Jung-Hun;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Autoignition characteristic is an important factor of all combustible substances, and a critical determinant in assessing the effectiveness of fire hazard prevention. This study investigated the autoignition characteristic of mixtures of Ethylene Glycol and water using an ASTM D2155 type ignition temperature measuring apparatus. It was possible to get the minimum temperature as $434^{\circ}C$ from 100% Ethylene Glycol within range of $75{\sim}160{\mu}l$. A volume of $100{\sim}125{\mu}l$ of a mixed sample of Ethylene Glycol and water (80 : 20) was ignited at the same temperature ($434^{\circ}C$). Also it was possible to get the auto ignition temperature as $437^{\circ}C$ from a mixed sample of Ethylene Glycol and water (60 : 40) within range of $120{\sim}160{\mu}l$. The instantaneous ignition temperatures determined for $125{\mu}l$ of each of the three samples were $579^{\circ}C$, $595^{\circ}C$ and $611^{\circ}C$, respectively. Both auto ignition temperatures and instantaneous ignition temperatures were increased through the addition of water to the samples.

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber (정적연소기에서 순간온도를 이용한 열유속에 관한 연구)

  • 이치우;김지훈;하종률;김시범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF

Determination of empirical formula for instantaneous heat transfer coefficients in a S. I. engine (스파크 점화기관의 순간열전달계수의 경험식 결정)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1475-1484
    • /
    • 1997
  • A new empirical formula for instantaneous heat transfer coefficients was determined. The determination of this formula is in need for prediction of instantaneous value of heat transfer coefficients to analyze in more detail the time variation of heat transfer rate from gas to wall in combustion chamber of a spark ignition engine. As the result, following formula was determined. h=687 $p^{0.75}$ $U^{0.75}$ $D^{0.25}$ - $T^{-0.465}$ U(.theta.)=O.494 $V_{p}$ +0.73*10$^{6}$ (1.35 p dV/d.theta.+V dp/d.theta.) Using this empirical formula, the instantaneous heat transfer coefficients of gas in the combustion chamber of spark ignition engine was predicted and compared with experimental values.

Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor (모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구)

  • Jin, Yu-In;Ryu, Gyong Won;Min, Seong Ki;Kim, Hong Jip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.