• 제목/요약/키워드: instantaneous deflection

검색결과 20건 처리시간 0.028초

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

볼 엔드밀 가공에서의 공구 처짐 예측과 정밀 가공에 관한 연구 (A Study on the Prediction of Tool Deflection and Precision Machining in Ball End Milling Process)

  • 조현덕;양민양
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1669-1680
    • /
    • 1992
  • 본 연구에서는 볼 엔드밀 가공에서 공구계의 처짐을 고려한 절삭력과 처짐을 예측하고, 처짐의 예측으로 가공 정밀도를 향상시키는 이송 속도와 헬릭스 각의 선정 에 대해서 고찰한다.

곡면의 볼 엔드밀 가공에서 가공오차 특성에 관한 연구 (A Study on the Machining Error Characteristics in Ball-End Milling of Surface)

  • 심기중;유종선;유기현;정진용
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.7-14
    • /
    • 2004
  • Machining error is defined the normal distance between designed surface and actual tool path with tool deflection. This is inevitably caused by the tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, tool deflection is usually known as the most significant factor of machining error. Tool deflection problem is analyzed using Instantaneous horizontal cutting forces. The high quality and precision of machining products are required in finishing. In order to achieve these purposes, it is necessary work that decrease the machining error. This paper presents a study on the machining error caused by the tool deflection in ball end milling of 2 dimensional surface. Tool deflection model and simple machining error prediction model are described. This model is checked the validity with machining experiments of 2 dimensional surface. These results may be used to decrease machining error and tool path decision.

  • PDF

볼 엔드밀 가공에서 치수오차에 관한 실험적 연구 (An Experimental Study on the Dimensional Error in Ball End Milling)

  • 심기중;유종선;정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

직접형상제어를 위한 공구경로의 보상 : 2D 윤곽가공의 공구휨을 중심으로 (Path compensation toward direct shape control: dealing with tool deflection problem in 2D contour machining)

  • 조정훈;서석환
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.97-111
    • /
    • 1995
  • In this paper, we investigate path compensation scheme for the machining errors due to tool deflection in 2D contour machining. The significance of the deflection error is first shown by experiments, and a direct compensation scheme is sought. In the presented scheme, the tool path is evaluated and correcte based on the instantaneous deflection force model, until the desired contour can be obtained under the presence of tool deflection in actual machining. In the sense that the developed method estimates and compensates the machining errors via modifying the tool path, it is distinguished from the previous approach based on geometric simulation and cutting simulation. Further, it can be viewed as a direct and active method toward direct shape control in CNC machining. Simulation results are included to show the validity and adequacy of the path-modification scheme under various cutting conditions.

  • PDF

RC 짧은보(a/d<2.5)의 순간처짐 산정에 대한 연구 (Instantaneous Deflection calculation Incorporated with Internal Force State Factor In RC short beams(a/d<2.5))

  • 오현철;정제평;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.713-718
    • /
    • 2001
  • This paper describes an attempt to develop a new equation to calculate deflection for reinforced concrete deep beams(a/d<2.5). The main idea incorporated with this equation is the internal force state factor($\alpha$)which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new equation for deflection calculation using internal force state factor($\alpha$)provides more exact result of deflection in reinforced concrete deep beams than the equation predicted by the current code provisions.

  • PDF

부분 프리스트레스트콘크리트 휨부재의 장기거동 (Time Dependent Behavior of Partially Prestressed Concrete Flexural Members)

  • 김수만;이운재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.647-650
    • /
    • 2003
  • Under sustained loads, the deformation of a structure gradually increase with time and eventually may be much greater than its instantaneous value, This inelastic and time-dependent deformation causes increase in deflection and curvature, redistribution of stress and internal action, In this paper, time-dependent analysis with creep and shrinkage of uncracked and cracked partially prestressed concrete flexural members is presented.

  • PDF

실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증 (Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System)

  • 정대혁;서석환
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF

엔드밀 가공에서의 절삭력 모델링에 관한 연구 (A Study on the Modeling for Cutting Force)

  • 김성청
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.58-65
    • /
    • 2000
  • This study is concerned about the verification and the implementation of a mechanical model for the force system in end milling. The model is based on the relationship between the cutting forces and the chip thickness. The components of the model are based on the average cutting forces which are experimentally obtained. And, both instantaneous and average force system characteristics are described as a function of cut geometry and a feed rate. This model employed two specific cutting forces, instantaneous and average specific cutting force, and the models which obtained using two cutting forces were compared and analyzed. In this study, cutter deflection with respect to the center of rotation is considered, which is a major part of the tool run-outs. The effect of run-out on the cutting forces is also discussed. The relationships among the run-out parameters, cutting parameters and the resulting force system characteristics are presented. In all cases, for the down milling with a right hand helix cutter is considered.

  • PDF