• Title/Summary/Keyword: instability mechanism

Search Result 352, Processing Time 0.026 seconds

Gelation Behavior of Ultra High Temperature Pasteurized Milk during Storage (초고온 살균유의 저장 중 겔 형성 거동)

  • 조영희;홍윤호
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2000
  • In order to examine physicochemical gelation behavior of ultra high temperature(UHT) pasteurized milk during storage at 4$^{\circ}C$ and 25$^{\circ}C$, pH, electrophoresis, alcohol test, sialic acid contents and free amino groups contents were biweekly determined. The pH of UHT pasteurized milk decreased with increasing storage time. Gelation of the UHT milk occured faster at 25$^{\circ}C$ than at 4$^{\circ}C$ with larger decreasing rate of pH. The alcohol test showed positive results at lower pH than 6.5, which could indicate the casein instability and beginning of gelation. The electrophoretic patterns showed a decrease in the concentrations of all caseins. Degradation of k-casein was faster in all cases, while $\alpha$-casein and $\beta$-casein were also extensively degraded later. The sialic acid contents of the samples increased gradually during storage, and the increasing rate was higher before gel formation. The free amino groups of the samples increased gradually during storage. The increasing rate of free amino groups was faster at 25$^{\circ}C$ than at 4$^{\circ}C$. The samples stored at 25$^{\circ}C$ gelled earlier than those stored at 25$^{\circ}C$, with corresponding increase of free amino groups. The residual proteolytic enzymes, which survived during the UHT heat treatments and were reactivated during storage, could be responsible for UHT pasteurized milk gelation during storage. It is assumed that proteolytic degradation of caseins followed by aggregation would be attributable to complicated reaction mechanism.

  • PDF

The Generative Mechanism of Cloud Streets

  • Sung-Dae Kang;Fujio Kimura
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.119-124
    • /
    • 1992
  • Cloud streets were successfully simulated by numerical model (RAMS) including an Isolated mountain near the coast, large sensible heat flux from the sea surface, uniform stratification and wind velocity with low Froude number (0.25) in the inflow boundary The well developed cloud streets between a pair of convective rolls are simulated at a level of 1 km over the sea. The following five results were obtained: 1) port the formation of the pair of convective rolls, both strong static instability and a topographically induced mechanical disturbance are strongly required at the same time. 2) Strong sensible heat flux from the sea surface is the main energy source of the pair of convective rolls, and the buoyancy caused by condensation in the cloud is negligibly small. 3) The pair o( convective rolls is a complex of two sub-rolls. One is the outer roll, which has a large radius, but weak circulation, and the other is the inner roll, which has a small radius, but strong circulation. The outer roll gathers a large amount of moisture by convergence in the lower marine boundary, and the inner roll transfers the convergent moisture to the upper boundary layer by strong upward motion between them. 4) The pair of inner rolls form the line-shaped cloud streets, and keep them narrow along the center-line of the domain. 5) Both by non-hydrostatic and by hydrostatic assumptions, cloud streets can be simulated. In our case, non-hydrostatic processes enhanced somewhat the formation of cloud streets. The horizontal size of the topography does not seem to be restricted to within the small scale where non-hydrostatic effects are important.

  • PDF

A Comparative Study on a Supplier Credit and a Buyer Credit in International Transactions of Capital Goods - Focusing on Industrial Plant Exports, Shipbuilding Exports, and Overseas Constructions -

  • Kim, Sang-Man
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.48
    • /
    • pp.127-155
    • /
    • 2010
  • The international transactions of capital goods such as industrial plant exports, overseas constructions, and shipbuilding exports, are so huge that tremendous amount of funds are required, and that most of the loans are long-term credits of over five years. In the export of huge capital goods, financing is more crucial than technology itself. Some of the importing countries are developing ones that are politically and economically unstable. Therefore the financing mechanism for these transactions is conclusive in winning these projects. Global financial market instability caused by US sub-prime mortgage financial crisis expanded all over the world, and the international transactions have been decreased due to global credit crisis. This indicates how much influential the financing market is in international transactions. The financing schemes are classified into supplier credit and buyer credit by who provides the financing. A supplier credit is a credit extended by an exporter(seller) to an importer(buyer) as part of an export contract. Cover for this transaction may be extended by an export credit agency('ECA') to the exporter. In a sales contract a seller shall provide fund required to manufacture goods, and in a construction contract a contractor shall provide fund required to complete a construction. A buyer credit is an arrangement in which an exporter enters into a contract with an importer, which is financed by means of a loan agreement A Comparative Study on a Supplier Credit and a Buyer Credit in International Transactions of Capital Goods 155 where the borrower is the importer. In a sales contract a buyer shall provide fund required to manufacture and procure the goods, and in a construction contract an owner shall provide fund required to complete a construction. Therefore an exporter is paid on progressive payment method. A supplier credit and a buyer credit have their own advantages and disadvantages in the respect of the parties respectively. These two financing methods are selectively used considering financing conditions such as funding cost, importer's and/or exporter's financial conditions, importing country's political risk.

  • PDF

The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model (탄소성 모델에 의한 포물선 아치의 극한 내하력 평가)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

ATTITUDE STABILITY OF A SPACECRAFT WITH SLOSH MASS SUBJECT TO PARAMETRIC EXCITATION (계수자극을 받는 유동체를 포함한 위성체의 자세 안정도 해석)

  • Kang, Ja-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.205-216
    • /
    • 2003
  • The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.

Flow of Non-Newtonian Fluids in an Annulus with Rotation of the Inner Cylinder (안쪽축이 회전하는 환형관내 비뉴튼유체 유동 연구)

  • 김영주;우남섭;황영규
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2002
  • This experimental study concerns the characteristics of a helical flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. The pressure losses and skin friction coefficients have been measured for the fully developed flow of Non-Newtonian fluid, aqueous solution of sodium carbomethyl cellulose (CMC) and bentonite with inner cylinder rotational speed of 0~400 prm. Also, the visualization of helical flows has been performed to observe the unstable waves. The results of present study reveal the relation of the Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The pressure losses increase as the rotational speed increases, but the gradient of pressure losses decreases as the Reynolds number increases in the regime of transition and turbulence. And the increase of flow disturbance by Taylor vortex in a concentric annulus with rotating inner cylinder results in the decrease of the critical Reynolds number with the increase of skin friction coefficient.

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle - ($6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 -)

  • Kim, Jong-Do;Park, Hyun-Joon
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.