• Title/Summary/Keyword: instability flow

Search Result 769, Processing Time 0.025 seconds

3D Acoustic Field Analysis in an Annular Combustor System under a Cold Flow Condition (환형 연소기 시스템에서 비연소 3D 음향장 해석)

  • Lim, Jaeyoung;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.49-56
    • /
    • 2017
  • The current study has developed an in-house 3D FEM code in order to model thermoacoustic problems in an annular system and compared the acoustic field calculation results with measured ones from a benchmark combustor. From the comparison of calculation results with the measured data, the current acoustic code could successfully capture the various acoustic mode found in the annular system. In addition, it was found that the transverse waves in the combustor were strongly affected by the nozzle acoustic impedances, as well, the pressure distributions were closely related with the combustor acoustic pressure field.

Numerical Investigation of Aerodynamic Sounds by Vortex-Edge Interaction (Vortex-Edge 의 상호작용에 의한 유동소음의 수치계산)

  • Kang, Ho-Keun;Kim, Jeong-Hwan;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1915-1920
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer impinging on a rigid surface. In this paper we present a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing a conventional FDLB model, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}=23^{\circ}$ . At a stand-off distance ${\omega}$ , the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips.

  • PDF

Study on Dynamics Modeling of Pogo Suppression Device (PSD) (포고억제장치(PSD) 동특성 모델링에 관한 연구)

  • Lee, Jun-Kyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • The effectiveness of a pogo suppression device (PSD) on the response of piping system simulating the propellant supply lines of the rocket engines was investigated experimentally by other researchers. In this study, the simplified analytical model was made, and the key parameters which are difficult to derive theoretically were identified in combination with the previous experimental work. In other words, the flow transient equations for a PSD system and the key parameters used to decide the instability of the system from the linearized transfer function including inertance, compliance, and resistance were derived. From the analysis, the values of key parameters could be determined from the experimental results.

Numerical Analysis of Detonation of Kerosene-Air Mixture and Solid Structure (케로신-공기 혼합물의 데토네이션 모델과 구조체 모델을 통한 금속관의 수치해석)

  • Lee, Younghun;Gwak, Min-Cheol;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.29-37
    • /
    • 2015
  • This paper presents a numerical investigation on detonation of a kerosene-air mixture in the copper tube and the structural response associated with combustion instability in liquid rocket engine. A single step Arrehnius rate law and Johnson-Cook strength model are used to describe the chemical reaction of kerosene-air mixture detonation and the plastic deformation of the copper tube. The changes of flow field and tube stress which are induced by plastic deformation, are investigated on the different tube thicknesses and nozzle configurations.

Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.100-113
    • /
    • 2017
  • Snap rolling during hard turning and instability during emergency rising are important features of submarine operation. Hydrodynamics modeling using a high incidence flow angle is required to predict these phenomena. In the present study, a quasi-steady dynamics model of a submarine suitable for high-incidence-angle maneuvering applications is developed. To determine the hydrodynamic coefficients of the model, static tests, dynamic tests, and control surface tests were conducted in a towing tank and wind tunnel. The towing tank test is conducted utilizing a Reynolds number of $3.12{\times}10^6$, and the wind tunnel test is performed utilizing a Reynolds number of $5.11{\times}10^6$. In addition, least squares, golden section search, and surface fitting using polynomial models were used to analyze the experimental results. The obtained coefficients are presented in tabular form and can be used for various purposes such as hard turning simulation, emergency rising simulation, and controller design.

Micro-Gravity Research on the Atomization Mechanism of Near-Critical Mixing Surface Jet

  • Tsukiji, Hiroyuki;Umemura, Akira;Hisida, Manabu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.774-778
    • /
    • 2004
  • The atomization process of a circular $SF_{6}$ liquid jet issued into an otherwise quiescent, high-pressure $N_2$ gas was observed to explore the breakup mechanism of liquid ligaments involved in turbulent atomization. Both liquid and gas temperatures were fixed at a room temperature but the gas pressure was elevated to more than twice the critical pressure of $SF_{6}$. Therefore, the liquid surface was in a thermodynamic state close to a critical mixing condition with suppressed vaporization. Since the surface tension and the surface gas density approach zero and the surface liquid density, respectively, phenomena equivalent to those which would appear when a very high speed laminar flow of water were injected into the atmospheric-pressure air can be observed by issuing $SF_{6}$ liquid at low speeds in micro-gravity environment which avoid disturbances due to gravity forces. The instability ob near-critical mixing surface jet was quantitatively characterized using a newly developed device, which could issue a very small amount of $SF_{6}$ liquid at small constant velocity into a very high-pressure $N_2$ gas.

  • PDF

A PIV Study on Loss Reduction for Tilting Disk Check Valve Installed in Piping System of Water Supply by PIV (PIV에 의한 상수도 배관용 틸팅디스크 체크 밸브의 손실저감에 관한 연구)

  • Kim, B.S.;Kim, J.H.;Lee, J.Y.;Kim, J.G.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.577-582
    • /
    • 2003
  • In generally, under the influence of over-pressure drop, serious problems such as cavitation, choked flow, flashing and vibration has been coming around the tilting disk check valve. A PIV experiment to examine the cause of energy loss has been performed and the improvement configuration of valve seat based on this visualization results is proposed. In the visualization results, flows in the piping system became instability under the influence of the shape of boss. This unstable flows induces sudden pressure drop in the piping system. So, we change the configuration of boss as a streamlined design to be stabilized the flows. A pressure measurement has been performed to know that the influence of the configuration change. In result, the rate of pressure loss reduction is about 22% at the position of No. 2 and 24.2% at the position of No. 6 in comparison with pre-improved shape.

  • PDF

Basic Experiment on the Propagation Characteristics of Premixed Flames in Narrow Annular Coaxial Quartz Tubes (좁은 다중 동축 석영관 내부에서의 예혼합 화염의 전파 특성에 대한 기초 실험)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in narrow annular coaxial tubes (NACT) were investigated experimentally. The NACT burner was proposed as a model of a cylindrical refractory burner, and it was made of quartz tubes. Flame stabilization conditions affected by the characteristic length of the burner was investigated with the variation of the equivalence ratio and the flow rates. Flame behaviors in narrow spaces could be directly observed. Conclusively, more wide flame stabilization conditions could be obtained at the case of the decreased channel scale. A flame instability, such as combustion noise was detected concerned with the flame oscillation observed at the surface of multi channel stage. Some flame propagation characteristics had complicated tendencies that may exist in practical porous-media combustors. Therefore, this NACT burner can be a basic configuration for the development of flame stabilization model in porous media combustor, and it will enhance our understanding about the behavior of flames in meso-scale combustion spaces.

Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking (중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석)

  • Kang, Chaeuk;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

Study on the Experiment of the Floating Ring Seal with Bump Foil for High Pressure Turbopump (범프 포일을 장착한 고압 터보펌프용 플로팅 링 실의 실험에 관한 연구)

  • Kim Kyoung-Wook;Kim Chang-Ho;Ahn Kyoung-Min;Lee Sung-Chul;Lee Yong-Bok
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • The floating ring seal which is used in the high pressure turbo pump is frequently used in the oxidizer pump and the fuel pump of the turbo pump of the liquid propulsion rocket, because it is able to minimize clearance to decrease the leakage flow rate. Compared with contact seal, the floating ring seal has advantage of minimizing clearance without rubbing phenomenon. But, the floating ring seal has a tendency to increase instability in operating condition in the high speed region. In this research, we devised floating ring seal which is inserted bump in the outer surface in order to improve the stability in the high speed region. Through this work, we expect to improve stability of floating ring seal with increasing the direct damping coefficient of seal and decreasing the eccentricity ratio.