• Title/Summary/Keyword: inside structure

Search Result 1,647, Processing Time 0.028 seconds

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Oh, Young-Hoon;Cho, Hyun-Woo;Kim, Jeong-Min;Park, Chang-Hyun;Sung, Bong-June
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.975-979
    • /
    • 2012
  • Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

Suspended Columns for Seismic Isolation in Structures (SCSI): Experimental and numerical studies

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • In this paper, a modified and improved seismic isolation system called suspension columns for seismic isolation was investigated. An experimental study of the proposed isolation method, together with theoretical and numerical analyses, has thoroughly been conducted. In the proposed method, during the construction of the foundation, some cavities are created at the position of the columns inside the foundation and the columns are placed inside the cavities and hanged from the foundation by flexible cables rather being directly connected to the foundation. Since the columns are suspended and due to the gap between the columns and walls of the cavities, the structure is able to move freely to each side thus, the transmitted seismic actions are reduced. The main parameter of this isolation technique is the length of the suspension cable. As the cable length is changed, the natural frequency of the structure is also changed, thus, the desired frequency can be achieved by means of an appropriate cable length. As the experimental phase of the study, a steel frame structure with two floors was constructed and subjected to the acceleration of three earthquakes using a shaking table with different hanging cable lengths. The structural responses were recorded in terms of acceleration and relative displacement. The experimental results were compared to the theoretical and numerical ones, obtained from the MATLAB programming and the finite element software ABAQUS, showing a suitable agreement between them. The results confirm the effectiveness of the proposed isolation method in reducing the seismic effects on the structure.

Sieving the Polymer Chains through Anodic Aluminum Oxide Membranes (Anodic Aluminum Oxide Membrane을 통한 고분자 사슬의 선택적 투과)

  • Choi, Yong-Joon;Lee, Han Sup
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.291-300
    • /
    • 2016
  • Techniques for selectively separating molecules of gas and liquid states using various separation membranes have been widely used in variety of applications such as chemical, biological, pharmaceutical, and petrochemical industries. As the nanochannel diameter, inter-channel distance and length of the nanochannel of the anodic aluminum oxide (AAO) membranes can be precisely controlled, various studies to effectively separate mixture of various molecules using AAO membrane have been widely carried out. In this study, we fabricated AAO membranes of cylindrical nanochannels of various diameter sizes and of through-hole structure, that is, nanochannels of which both ends of each nanochannel are open. Using those AAO membranes of through-hole nanochannel structure, we studied the selective permeation polymer chains dissolved in a solvent based on hydraulic volume of the polymer chains. We found a precise, quantitative relationship between the radius of gyration of polymer chains that permeated through nanochannels inside AAO membrane and the diameter of nanochannels. In addition, we demonstrate that the behavior of the polymer solution flowing through nanochannel of the AAO membrane can be successfully described with the Hagen-Poiseuille relationship. It is, therefore, possible to theoretically interpret the nanoflow of the solution flowing inside the cylindrical nanochannel.

Growth of vertically aligned carbon nanotubes on a large area Si substrates by thermal chemical vapor deposition

  • Lee, Cheol-Jin;Park, Jung-Hoon;Son, Kwon-Hee;Kim, Dae-Woon;Lyu, Seung-Chul;Park, Sung-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.212-212
    • /
    • 2000
  • Since the first obserbvation of carbon nanotubes, extensive researches have been done for the synthesis using arc discharge, laser vaporization, and plasma-enhanced chemical vapor deposition. Carbon nanotubes have unique physical and chemical properties and can allow nanoscale devices. Vertically aligned carbon nanotubes with high quality on a large area is particularly important to enable both fundamental studies and applications, such as flat panel displays and vacuum microelectronics. we have grown vertically aligned carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition using C2H2 gas at 750-950$^{\circ}C$. we deposited catalytic metal on Si susbstrate using thermal evaporation. The nanotubes reveal highly purified surface. The carbon nanotubes have multi-wall structure with a hollow inside and it reveals bamboo structure agreed with base growth model. Figure 1 shows SEM micrograph showing vertically aligned carbon nanotubes whih were grown at 950$^{\circ}C$ on a large area (20mm${\times}$30mm) of Si substrates. Figure 2 shows TEM analysis was performed on the carbon nanotubes grown at 950$^{\circ}C$ for 10 min. The carbon nanotubes are multi-wall structure with bamboo shape and the lack of fringes inside the nanotube indicates that the core of the structure is hollow. In our experiment, carbon nanotubes grown by the thermal CVD indicate base growth model.

  • PDF

Gas and Fluid Inclusion Studies of the Granitic and Rhyolitic Rocks From the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암과 화강암류의 가스 및 유체포유물 연구)

  • Kim, Kyu Han;Ha, Woo Young
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.519-529
    • /
    • 1997
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure which is interpreted as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. Pervasive silver mineralization took place in the rhyolitic rock of the southwestern margin of the caldera. Gas and fluid incluson studies were carried out to investigate the petrogenetic evolution and post-magmatic alteration for the rhyolitic and granitic rocks. Gas compositions are characterized by a low $CH_4/CO_2$ ratio (0.004-0.005) for rhyolitic and inside granitic rocks and a high $CH_4/CO_2$ ratio (0.01~0.29) for outside granitic rocks such as the Kimpo and Incheon granites. Homogenization temperature of solid daughter mineral bearing fluid inclusion (III and IV types) and two phase fluid inclusion (I and II types) for quartz in the Bupyeong granites range from 400 to $500^{\circ}C$ and 121 to $514^{\circ}C$, respectively. Salinties vary from 20 to 30 wt% NaCl for type III and IV inclusions and less than 20 wt % NaCl for type I and II inclusions. The fluid inclusion data shows a considerable influx of the meteoric water toward post magmatic alteration stage.

  • PDF

Design of a Small Radio Frequency Identification Tag Antenna Using a Corrugated Meander Line Applicable to a Drug Runout Sensor System

  • Ko, Dong-Ok;Woo, Jong-Myung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • This article proposes an ultrahigh frequency band radio frequency identification (RFID) tag antenna for drug runout management that can be used in hospitals. The RFID tag antenna is designed to function as a sensor that alerts drug runout when a drug inside a drip chamber is completely consumed but does not work when a drug remains inside a drop chamber. A previously proposed 915 MHz dipole antenna, is too large to be attached to the drip chamber of a feeding bag. Moreover, the length of the dipole (L) should be increased for conjugate matching with an RFID chip. Therefore, the dipole antenna is downsized so that it can be attached to the drip chamber through a fine meander line structure coupling with a corrugate meander line. A transparent cover is added to enhance the grip force between the designed antenna and the drip chamber and to enable detachment. The dimensions of the completed antenna structure attachable to a drip chamber are 32.59 mm (height) and 13.5 mm (width). The gain reduction due to the decreased antenna length is enhanced. The fabricated antenna shows an average omni-directional read range of 10.65 m on a horizontal plane and has the function of sensing the presence of a drug.

Comparative modeling of human tyrosinase - An important target for developing skin whitening agents (사람 티로시나제의 3차원 구조 상동 모델링)

  • Choi, Jong-Keun;Suh, Joo-Won
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.182-186
    • /
    • 2012
  • human tyrosinase (hTyr) catalyzes first and the rate limiting step in the synthesis of polymerized pigment, melanin which determines skin, hair and eye colors. Mutation of hTyr often brings about decrease of melanin production and further albinism. Meanwhile, a number of cosmetic companies providing skincare products for woman in Asia-Pacific region have tried to develop inhibitors to bright skin color for several decades. In this study, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from bacillus megaterium as a template to serve structural information of hTyr. According to our model and sequence analysis of type 3 copper protein family proteins, two copper atoms of active site located deep inside are coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Cavity which accommodates substrates was like funnel shape of which entrance was wide and expose to solvent. In addition, protein-substrate and protein-inhibitor complex were modeled with the guide of van der waals surface generated by in house software. Our model suggested that only phenol group or its analogs can fill the binding site near nuclear copper center because inside of binding site has narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogensis agents.

  • PDF

Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC) (다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

Reduced Hybrid Ring Coupler Using Surface Micromachining Technology for 94-GHz MMIC Applications

  • Uhm, Won-Young;Beak, Tae-Jong;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.246-251
    • /
    • 2016
  • In this study, we developed a reduced 94 GHz hybrid ring coupler on a GaAs substrate in order to demonstrate the possibility of the integration of various passive components and MMICs in the millimeter-wave range. To reduce the size of the hybrid ring coupler, we used multiple open stubs on the inside of the ring structure. The chip size of the reduced hybrid ring coupler with multiple open stubs was decreased by 62% compared with the area of the hybrid ring coupler without open stubs. Performance in terms of the loss, isolation, and phase difference characteristics exhibited no significant change after the use of the multiple open stubs on the inside of the ring structure. The reduced hybrid ring coupler showed excellent coupling loss of $3.87{\pm}0.33dB$ and transmission loss of $3.77{\pm}0.72dB$ in the measured frequency range of 90-100 GHz. The isolation and reflection were -48 dB and -32 dB at 94 GHz, respectively. The phase differences between two output ports were $180^{\circ}{\pm}1^{\circ}$ at 94 GHz.