• 제목/요약/키워드: input ground motion

검색결과 196건 처리시간 0.022초

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률 (Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models)

  • 김동석;고현무;최창열;박원석
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.11-20
    • /
    • 2008
  • 비선형 구조계의 확률론적 지진해석 방법 중 대표적인 것은 지진 재해도 수준에 해당하는 입력지반운동 모델을 사용한 시간이력을 수행하여 그 응답의 확률분포를 예측하는 것이다. 이 연구에서는 널리 사용되고 있는 두 가지 입력지반운동 모델에 따른 구조계 응답의 분포특성 및 파손확률의 차이와 그 원인을 분석한다 입력지반운동 모델로는 실제 지진기록을 배율 조정하여 사용하는 배율조정 입력지반운동과 설계 응답스펙트럼에 상응하는 인공 지진기록을 사용하는 스펙트럼 맞춤 입력지반운동 두 가지를 고려한다. 동일한 지진재해도 수준을 고려한 해석결과 설계 응답스펙트럼에 상응하는 인공 지진기록을 사용한 입력지반운동 모델은 실제 지진기록을 배율 조정한 입력지반운동 모델보다 평균적으로 응답을 크게 평가하였고 이로 인해 파손확률 또한 더 큰 것으로 나타났다 이러한 경향은 연약한 지반에서 더욱 현저한 것으로 나타났다. 이러한 입력지반운동 모델에 따른 파손확률의 차이는 스펙트럼 맞춤 입력지반운동의 목표로 사용된 도로교 설계기준의 설계 응답스펙트럼이 실제 지진기록의 응답스펙트럼보다 장주기로 갈수록 응답을 크게 평가하도록 보수적으로 만들어졌기 때문인 것으로 나타났다.

입력지반운동의 공간적 변화를 고려한 교량의 지진응답해석 (Seismic Response Analysis of Bridges Considering Spatial Variation of Input Ground Motion)

  • 최광규;강승우;국승규
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.76-82
    • /
    • 2010
  • This paper presents a seismic response analysis of bridge structures considering the spatial variation of input ground motion. In earthquake analyses of structures, it is usually assumed that the input ground motion is the same at every support. However, this assumption is not justified for long structures like bridges, because observations have shown that the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, an analysis of the foundation-soil interaction must always be performed. To consider the foundation-soil interaction, a soil response analysis is performed first, and after determining the material characteristics of the foundation element obtained by this foundation-soil interaction analysis, the seismic response analysis of a bridge superstructure with equivalent springs and dampers is performed. Finally, the influences of the spatial variation in the input motion, which are affected by different soil characteristics, are considered.

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • 한국지반환경공학회 논문집
    • /
    • 제22권7호
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Input energy spectrum damping modification factors

  • Onur Merter;Taner Ucar
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.219-228
    • /
    • 2024
  • This study examines damping modification factors (DMFs) of elastic input energy spectra corresponding to a set of 116 earthquake ground motions. Mean input energy per mass spectra and mean DMFs are presented for both considered ground motion components. Damping ratios of 3%, 5%, 10%, 20%, and 30% are used and the 5% damping ratio is considered the benchmark for DMF computations. The geometric mean DMFs of the two horizontal components of each ground motion are computed and coefficients of variation are presented graphically. The results show that the input energy spectra-based DMFs exhibit a dependence on the damping ratio at very short periods and they tend to be nearly constant for larger periods. In addition, mean DMF variation is obtained graphically for also the damping ratio, and mathematical functions are fitted as a result of statistical analyses. A strong correlation between the computed DMFs and the ones from predicted equations is observed.

2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사 (Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault)

  • 최호선
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

시간영역 인공지진파 생성 (Generation of Synthetic Ground Motion in Time Domain)

  • 김현관;박두희;정창균
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.51-57
    • /
    • 2010
  • 국내에서 내진설계의 중요성이 점차적으로 부각되고 있으며 이에 따라 설계 시 동적 지진해석의 수행빈도가 높아지고 있다. 동적 지진해석을 수행하기 위한 가장 중요한 입력변수 중 한가지는 입력지진파이다. 그러나 현재 국내에서는 지진학적 검토 없이 미국, 일본 등에서 계측된 강진 기록을 입력지진파로 사용하거나 주파수영역에서 생성된 인공지진파를 사용하고 있다. 국외 계측 지진기록은 지진 규모에 따라 변화하는 지속시간과 에너지를 고려할 수 없어서 국내 지진환경에는 적합하지 않으며, 주파수 영역에서 생성되는 설계응답스펙트럼에 맞춤형 인공지진파는 실제 지진기록과 주파수 특성이 상이한 문제가 있다. 본 연구에서는 이와 같은 입력지진파의 문제점을 극복하기 위하여 시간영역에서 수행되는 응답스펙트럼 맞춤형 인공지진파 알고리즘을 적용하여 입력 지진파를 생성하였다. 생성된 지진파는 계측 지진기록의 고유한 성질인 Non-stationary 특성을 보존하며 동시에 설계 응답스펙트럼과 거의 완벽한 일치성을 보이는 것으로 나타났다.

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능 (Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions)

  • 선창호;안성민;김정한;김익현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.137-144
    • /
    • 2019
  • 근단층 지역에 위치한 교량은 근단층지반운동에 대한 내진안전성을 확보하는 것이 중요하다. 본 연구에서는 연약지반이 두껍고 다양한 지층으로 구성된 지역에 건설되는 단일형 현장타설말뚝 교량의 지진거동특성과 내진안전성을 분석하였다. 근단층지반운동을 생성하고 지반해석을 수행하여 각 지층에서의 지반가속도이력을 산정하였다. 이 가속도이력을 이용하여 각 지층의 지반을 등가스프링으로 모델화하고, 각 지층에서의 가속도시간이력을 입력지반운동으로 하는 다지점 가진 지진해석을 수행하였다. 근단층지반운동의 특성으로 인하여 교량은 탄성영역 내에서 거동하였지만 최대모멘트의 발생 위치 등이 설계지반운동을 고려할 때와는 상이한 특성을 보였다.