• Title/Summary/Keyword: inorganic salts

Search Result 208, Processing Time 0.033 seconds

Study on purification and extraction of nitrate salts from waste scrubbing liquid of de-SOx/de-NOx (탈질/탈황 폐 세정액으로부터 질산염 추출 및 정제 연구)

  • Kim, Woo-Ram;Jo, Young-Min;Lee, Heon-Seok;Oh, Soo-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • IMO to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such ship exhaust emissions. According to the IMO policy, every ship entering the Baltic SECAs has to equip the gas cleaning scrubber. The discharged waste solution by gas cleaning scrubber contains many types of salts, which to recover some valuable materials before disposal. This study try to achieve valuable salts including AN and AS throughout a few process such as selective organic solvents salting out, low temperature extraction and thermal evaporation. Amongst them, Thermal evaporation with repetition extraction using inorganic solvent was the most optimum to purify the extracted AN. This valuable salt was evaluated by Elemental analysis and Differential scanning calorimetry.

Influences of the Starting Salts on the Powder Characteristics of the Pb(Zr, Ti)$O_3$ Powders Prepared by Ultrasonic Spray Pyrolysis (원료염의 종류가 초음파 분무 열분해법에 의해 제조된 Pb(Zr, Ti)$O_3$미분말의 특성에 미치는 영향)

  • Kim, Hui-Bong;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.905-912
    • /
    • 1995
  • Influences of the starting salts on the phase and morphology of the Pb(Zr, T)O$_3$powders prepared by ultrasonic spray pyrolysis were studied. The Phases of the Powders Prepared from the combination of metal nitrate(or oxynitrate), acetate(or oxyacetate), and alkoxide were the Pb(Zr, Ti)O$_3$with or without minor PbTiO$_3$. The pores on the surface of the spherical particles increased with the nitrate content in the starting solution and their formation was thought to result from the decomposition characteristics of metal nitrate. Pb acetate, Zr oxyacetate, Ti oxynitrate, and Ti (isopropoxide+acetylacetonate) was suitable as the starting salts for the preparation of Pb(Zr, Ti)O$_3$powders by ultrasonic spray pyrolysis in the viewpoint of the phase and morphology of the powders.

  • PDF

Culture Conditions of Garlic Resistant Lactic Acid Bacteria for Feed Additives (사료첨가용 생균제 개발을 위한 마늘 내성 유산균의 배양 조건)

  • Kim, Yu-Jin;Jang, Seo-Jung;Park, Jung-Min;Kim, Chang-Uk;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • Culture conditions of L. plantarum TJ-LP-002, the garlic resistant strain isolated from pakimchi (green onion kimchi), were investigated for the use of feed additives. Acetic acid, citric acid, lactic acid, and tartaric acid were detected in the culture supernatant, and especially the concentrations of lactic acid and acetic acid significantly increased during cultivation. The antimicrobial activity of L. plantarum TJ-LP-002 was not affected by proteases, calatase or cellulase, which showed that the antimicrobial activity might be due to the production of acids rather than proteinaceous antimicrobial substances. L. plantarum TJ-LP-002 was resistant to neomycin sulfate, spectinomycin dihydrochloride, and lincomycin hydrochloride, sensitive to streptomycin sulfate, and intermediate resistant to ampicillin trihydrate, chloramphenicol, erythromycin, tetracycline hydrochloride, and kanamycin sulfate. The optimum initial pH of medium, fermentation temperature and time for the cell growth and antibacterial activity were pH 7.0, 30${^{\circ}C}$ and 24hr, respectively. The optimal composition of culture medium for the cell growth and antimicrobial activity was 3%(w/v) glucose as a carbon source, 3%(w/v) yeast extract as a nitrogen source, and manganese sulfate and ammonium citrate as inorganic salts. The combinatorial supplementation of these inorganic salts, rather than sole addition as an inorganic salt, resulted in better antibacterial activity.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전을 위한 고온 축열 물질의 열전달 특성)

  • Aiming, Mao;KIm, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

Candida tropicalis DS-72에 의한 Xylose로부터 Xylitol의 생산

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • A high xylitol producing yeast was isolated from the sludge of xylose manufacturing factory and then identified as Candida tropicalis DS-72 according to physiological properties. The strain was able to produce xylitol in a high concentration up to 72g/l from 100g/l xylose in 32 hours. Medium optimization for xylitol production by C. tropicalis DS-72 was performed. Effect of various nitrogen sources on xylitol production was investigated. Of nitrogenous compounds, yeast extract was the most suitable organic nitrogen nutrient for the enhancement of xylitol production. However, inorganic nitrogen resulted in a low cell concentration and did not produce xylitol. Effect of inorganic salts such as KH$_{2}$PO$_{4}$, and MgSO$_{4}$, 7H$_{2}$O on xylitol production was also studied. Optimal medium was selected as xylose 100g/l, yeast extract 10g/l, KH$_{2}$PO$_{4}$, 5 g/l and MgSO$_{4}$, 7H$_{2}$O 0.2 g/l. Xylitol of 88 g/l was produced from 100 g/l xylose in 30 hours using the optimal medium in a flask. In a fermentor, a fed-batch culture with 300g/l xylose was carried out. A final xylitol concentration of 240 g/l in the culture could be obtained in 43 hours of culture time by maintaining the high level of dissolved oxygen during growth phase and limiting the dissolved oxygen in the same culture during production phase. This result corresponded to a xylitol yield of 80% and a xylitol productivity of 5.58 g/1-h.

  • PDF

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

판별분석을 이용한 토지이용별 토양 특성 변화 연구

  • Go Gyeong-Seok;Kim Jae-Gon;Lee Jin-Su;Kim Tak-Hyeon;Lee Gyu-Ho;Jo Chun-Hui;O In-Suk;Jeong Yeong-Uk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.237-241
    • /
    • 2005
  • The physical and chemical characteristics of soils in a small watershed were investigated and the effect of geology and land use on soil quality were examined by using multivariate statistical methods, principal components analysis and discriminant analysis. It was considered that the accumulation of salts in the farmland soils indicated by electrical conductivity, contents of cations and anions and pH was caused by fertilizer input during cultivation. The contents of inorganic components are increased as following order: upland > orchard > paddy field > forest. The results of two discriminant analyses using water extractable inorganic components and their ratios by land use were also clearly classified by discriminant function 1 and 2. In discriminant analysis by components, discriminant function 1 indicated the effect of fertilizer application and increased as following order: upland > orchard > paddy field > forest soil.

  • PDF

Candida parapsilosis 돌연변이주에 의한 Xylitol 생산의 배지조건 최적화

  • Oh, Deok-Kun;Yoon, Sang-Hyun;Kim, Jung-Min;Kim, Sang-Yong;Kim, Jung-Hoe
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.507-511
    • /
    • 1996
  • Medium optimization for xylitol production from xylose by Candida parapsilosis ATCC 22019 mutant was performed. Effect of various nitrogen sources on xylitol production was investigatied. Of inorganic nitrogenous compounds, ammonium sulfate was effective for xylitol production and yeast extract was the most suitable orangic nitrogen nutrient for enhancement of xylitol production. Effect of inorganic salts such as KH$_{2}$PO$_{4}$ and MgSO$_{4}$-7H$_{2}$0 on xylitol production was also studied. Optimal medium was selected as xylose of 50 g/l, yeast extract of 5 g/l, (NH4$_{4}$)$_{2}$SO$_{4}$ of 5 g/l, KH$_{2}$PO$_{4}$ of 5 g/l, MgSO$_{4}$-7H$_{2}$O of 0.2 g/l. In a fermentor by using the optimal medium, a final xylitol concentration of 37 g/l could be obtained from 50 g/l of xylose with a xylitol yield of 74% and a xylitol productivity of 0.58 g/1-hr. At 300 g/l xylose, fermentation was also carried out and then a final xylitol concentration of 242 g/l was obtained at 272 hours. It was corresponding to xylitol yield of 80.7% and xylitol productivity of 0.58 g/1-hr.

  • PDF

Micelle Catalysis on the Reaction between Triphenylmethane Dyes and Cyanide Ion (Triphenylmethane Dye와 Cyanide Ion과의 반응에 대한 Micelle의 촉매작용)

  • Won Fae Koo
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.411-415
    • /
    • 1973
  • The reaction between cyanide ion and triphenyl methane dyes is subject to marked catalysis by cationic micelles of cetyltrimethyl ammonium bromide(CTABr) and retarded by anionic micelles of sodium lauryl sulfate(NaLS). Added salts, anions inhibit the catalysis by CTABr, and cations, especially $Zn^{++},\;Cd^{++}$ decrease the retardation of the reaction rates in the presence of NaLS. The kinetic effects of the ionic micelles are much larger in water than in ethanol-water, methanol-water, propanol-water and acetone-water, but strange solvent effects, acceleration the reaction rates, was found in the reaction with malachite green in water-methanol system.

  • PDF