• Title/Summary/Keyword: inorganic material

Search Result 939, Processing Time 0.028 seconds

SELECTED MECHANICAL PROPERTIES OF ORMOCER RESTORATIVE MATERIALS (Ormocer 계열 수복재의 물성에 관한 연구)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.362-370
    • /
    • 2002
  • During the last two decades, many new filling materials and material groups have been developed. the number of available restoratives has increased dramatically, especially during the last 5 years. Ormocers are a new class of materials which are still under development with regard to dental applications. However, in the chemical literature these materials have been known for a long time and used for producing scratch resistant coatings on plastic spectacle lenses. It is a combination of inorganic and organic materials. 'Ormocer' is an abbreviation for 'Organically Modified Ceramics'. These compounds are also known in the literature as 'Ormosils' (organically modified silicates). Their chemistry is comparable to that of silicones and organic polymers. The purpose of this study was to determine of compressive strength and flexural strength of a ormocer (Admira) and to investigate the effects of water absorption in comparison with three composite resins(Z-100, Tetric Ceram, Surefil) and one compomer(Dyract AP). The following results were obtained ; 1. Admira had the lower compressive strength than Surefil, but no statistically difference with other materials at 1 day(p>0.05). 2. Admira had the lower flexural strength than all other materials at 1 day. From 2 days, Admits showed lower flexural strength than three composite resin(p<0.05). 3. There was not statistically significant difference of compressive and flexural strengths between hybrid composite resin group(Z-100, Tetric Ceram) and Packable resin group(Surefil) for experimental period(30 days)(p>0.05). 4. All five materials showed an increase in compressive and flexural strength till 2 days and showed a decrease from 7 days in water(p<0.05). 5. Each materials had the statistically similar behavior of compressive and flexural strengths over time(p>0.05).

  • PDF

TREATMENT OF DENTAL CARIES BY ER:YAG LASER IN CHILDREN (소아 환자에서 Er:YAG Laser를 이용한 우식 병소의 처치)

  • Jang, Eun-Young;Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.4
    • /
    • pp.558-563
    • /
    • 2000
  • The lasers have been used in dentistry for more than 30 years and the application of lasers for drilling dental hard tissue has been investigated since the early developement of lasers. Recently, the Er:YAG laser was invented for hard tissue ablation. The Er:YAG laser, having a wavelength of 2.94um, is highly absorbed in both water and hydroxiapatite, leading to a very effective material for hard tissue removal by bursting off the solid tissue component that is, enamel and dentin are removed by the Er :YAG laser by water vaporization and microexplosion, without any melting of inorganic tissues. Therefore, the Er:YAG laser produced round craters with well defined margins and the surrounding tissues had no cracks and no charring. When used for cavity preparation, pulpal damage should not occur if hear buildup is minimized by careful selection of exposure parameters and by use of a water spray. The present study demonstrated that the Er:YAG laser cut the tooth substance adequately for composite resin restoration, without having undesirable side effects such as harmful effects on the pulp, discoloration or cracking etc. Also, the child patients were well cooperative during laser treatment mainly because of little noise, lesser vibration and minimal pain compared to conventional means of cavity preparation.

  • PDF

Changes in Chemical Compositions of Pumpkin(Cucurbita moschata DUCH.) Seed Sprouts (호박(Cucurbita moschata DUCH.)종실의 발아 성장 과정 중 성분 변화)

  • 이병진;장희순;이규희;오만진
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.527-533
    • /
    • 2003
  • This study was performed for increasing the consumption and developing the function of pumpkin(Cucurbita moschata DUCH.) seed. The changes of the contents of general chemical compositions, fatty acids, amino acids, ascorbic acid and ${\beta}$-carotene during sprouting were analyzed. Also, the bitter taste, which was produced during sprouting, were purified by using thin layer chromatography and preparative high pressure liquid chromatography. The purified bitter compound was identified by mass spectrum and nuclear magnetic resonance($^1$H '||'&'||' $\^$13/C-NMR). Weight of pumpkin seed sprout was increased to 348.4% and the length of stem was dramatically increased at 8 days. In each head and stem parts of the pumpkin seed sprout, the contents of protein and lipid were decreased, however, the contents of fiber, ash and soluble inorganic nitrogen were increased. The fatty acids of the pumpkin seed sprout were mainly represented as linoleic acid, oleic acid, palmitic acid and stearic acid. During sprouting, palmitic acid was gradually increased, reversely, linoleic acid was gradually decreased. The general amino acids of head part in the pumpkin seed sprout grown at 23$^{\circ}C$ during 8 days were orderly more contained glycine, alanine, arginine, cystein and proline. Those of free amino acids were orderly more contained arginine, threonine, alanine and glutamine. The contents of L-ascorbic acid and ${\beta}$-camtene of the pumpkin seed sprout were gradually increased with increasing sprouting days. The bitter taste material of head part of the pumpkin seed sprout was detected at Rf value 0.72 on silicagel TLC plate and separuted as one peak by HPLC. The chemical structure of the puified bitter compound was identified as a cucurbitacin glycoside by MS and NMR. The content of bitter compound at 8 days was contained 42.2 mg per 1kg sprout head.

Quality and Volatile-Flavor Compound Characteristics of Hypsizigus marmoreus (느티만가닥 버섯의 품질 및 휘발성 향기 성분 특성)

  • Park, Myoung-Su;Park, Joong-Hyun;Oh, Deog-Hwan
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2011
  • Hypsizigus marmoreus is a wild mushroom commonly consumed in South Korea due to its beneficial effects on health. In the present study, the general chemical and inorganic-element composition, the total amino acid contents, and the volatile-flavor compounds of H. marmoreus were investigated for food uses. The proximate compositions consisted of 60.1% carbohydrate, 32.0% crude protein, 8.98% moisture, 5.0% ash, and 2.0% crude lipid. The minerals in H. marmoreus were found to be as follows; potassium (429.5 mg), phosphorus (101.9 mg), sodium (20.3 mg), magnesium (54.86 mg), calcium (2.7 mg), zinc (0.8 mg), iron (0.7 mg), manganese (0.2 mg), and copper (0.1 mg), based on 100 g of mushroom dry weight. Seventeen kinds of total amino acids were found in H. marmoreus, with the glutamine acid content being the highest (2,340 mg/100 g), followed by the asparagine, serine, arginine, and leucine contents. The volatile-flavor components of H. marmoreus were collected via simultaneous steam distillation extraction (SDE), and were analyzed via gas chromatography-massspectrophotometry (GC-MS). A total of 17 volatile-flavor compounds were identified, including eight aldehydes, seven alcohols, one acids, and one other compounds. The most abundant compound was 2,3,6-trimethy1 pyridine, which accounted for more than 40% of the total volatiles; other important compounds were 1-octen-3-o1, buty1hydroxytoluene (BHT), isoocty1 phthalate, 3-octanal, 1-undecanol, and 2-amylfuran. These results provide preliminary data for the development of H. marmoreus as an edible food material.

A Study on Thermal Properties of Epoxy Composites with Hybrid Fillers (하이브리드 필러를 함유한 에폭시 복합체의 열적 특성 연구)

  • Lee, Seungmin;Rho, Hokyun;Lee, Sang Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.33-37
    • /
    • 2019
  • In this study, the graded thermal properties of composites are obtained by difference in specific gravity of fillers including Cu, h-BN and GO powders in epoxy. Relatively heavy powders such as Cu and h-BN compared to GO mostly at the bottom layer, while light GO powders were dispersed in the top layer in the composites. The thermal conductivity of composites was gradually increased from 0.55 (0.52) W/mK to 2.82 (1.37) W/mK for GO/h-BN (GO/Cu) epoxy composites from surface to bottom. On the contrary, the coefficient of thermal expansion was decreased from 51 ppm/℃ to 23 ppm/℃ and from 57 ppm/℃ to 32 ppm/℃ for GO/Cu and GO/h-BN, respectively. The variation of thermal properties in composites is attributed due to intrinsic material properties of filler including thermal conductivity, morphology and the distribution by the specific weight of fillers. This simple strategy for realizing graded thermal composites by introducing different filler materials would be effective heat transfer at interface of heterostructure with large thermal properties such as inorganic semiconductor/plastic, metal/plastic, and semiconductor/metal.

Summer Water Quality Management by Ecological Modelling in Ulsan Bay (생태계 모델을 이용한 울산만의 하계 수질관리)

  • Park, Sung-Eun;Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Cho, Yoon-Sik;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical study on coastal water quality management was conducted to examine the response of summer water quality to the flow into the sea of land based pollution load in Ulsan Bay, Korea The abatement of pollution load. from point sources of land was estimated on the basis of Korean coastal water quality standard using an ecosystem model. The results of the ecological model simulation showed that COD values in the inner part of the bay were greater than 280mg/L, and exceeded the grade III limit of Korean coastal water quality standard 30% of all land based pollution loads or organic and inorganic material loads from point sources should be cut down to keep the COD levels below 2mg/L. As environmental carrying capacity was estimated to be 7,193kgCOD/day to keep the COD levels below 2mg/L in Ulsan Bay, 3,083kgCOD/day of land based organic loads should be reduced. The phytoplankton blooms have occurred in the Teahwa river mouth or estuary repetitively, so it is important to control land based nutrients loads for removal of autochthonous organic loads around Ulsan Bay.

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

ELECTRON MICROSCOPIC STUDY OF RESIN-DENTIN HYBRID ZONE PRODUCED BY THE MOISTENING OF ACID CONDITIONED DENTIN SURFACE (산 표면처리 후 상아질 표면의 습윤이 하이브리드층 형성에 관한 전자현미경적 연구)

  • Lee, Kwang-Won;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.463-486
    • /
    • 1995
  • The effect of moistening and air-drying of acid-conditioned dentin before priming on the formation of resin-dentin hybrid zone was investigated, Freshly extracted human molars were used and divided at random into 5 groups, Groups 1 - 3 consisted of specimens conditioned with 10 % phosphoric acid for 20 seconds; Group 1 served as a control in which the conditioned dentin was simply blot-dried with a damp facial tissue; Group 2 was air dried for 30 seconds ; Group 3 was air dried for 30 seconds and immediately remoistened for 10 seconds with air-water syringe. and then the specimen was blot-dried with a damp facial tissue. Groups 4-5 were not acid conditioned ; In group 4, the smear layer on the dentin was blot dried before primer placement; Group 5 was air dried only for 30 seconds, The acetone-based primer and bonding agent of All Bond 2 (Bisco. Inc., USA) and composite resin (Z-100, 3M Dental products, USA) were applied for acid conditioned dentin and non-conditioned dentin. The morphologic ultrastructure of resin-dentin hybrid zone was examined by the use of SEM and TEM. and the existence of inorganic material and analysis of Ca/P weight-percent ratio in the resin-dentin hybrid zone were revealed by the EDAX, The results were as follows : 1. In the moistened specimens from acid-conditioned groups, the resin penetrated about 3-$4{\mu}m$ into dentin and the denatured collagen smear layer was not present at the surface. The resin tag was formed to a thickeness of 3-$4{\mu}m$ at the upper part of dentinal tubule and compactively connected to each other by means of many lateral branching. 2. In the air-dried specimens from acid-conditioned groups, the resin penetrated about 2.0-$2.5\;{\mu}m$ into dentin and an upper thin black layer to a thickness of 30-35nm was identified between adhesive resin and demineralized collagen layer. The resin tag to have a diameter of $2.5{\mu}m$ was formed at the upper part of dentinal tubule. However the funnel shape of the tag was not notable compared to the moistened specimens. 3. In the remoistened specimens from acid conditioned groups, the resin penetrated about 2.0-$2.5{\mu}m$ into dentin and an upper black layer was not present. The resin tag at the upper part of dentinal tubule was formed less than $2{\mu}m$ and was weakly connected to each other by means of few lateral branching. 4. In the non-conditioned groups, the smear layer was formed to a thickness of $0.5{\mu}m$ at dentin surface. However, the resin-dentin hybrid zone was not identified by TEM. The evidence of resin penetration into intertubular and intratubular dentin did not show. 5. All the acid-conditioned groups showed that the detected calcium and phosphorus weight percent ratios at the $2{\mu}m$ upper portion from the resin-dentin interface into the resin were much higher than that at the $2{\mu}m$ lower portion from the resin-dentin interface to dentin. (P<0.01).

  • PDF

A study on the hydraulic characteristics of the geosynthetic clay liners(GCL) with humic substances of leachate on the landfill. (폐기물 매립지의 침출수의 휴믹물질에 의한 토목합성수지 점토라이너의 수리학적 특성에 관한 연구)

  • 한영수;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • The study was performed to evaluate the effect of landfill leachate on the hydraulic conductivity of Geosynthetic Clay Liner (GCL) with two types of leachate. GCL used in waste landfills have a significant ability as a barrier material, however, they also have a potential danger when exposed to some organic and inorganic leachate as well as humic materials. In this study, swelling tests and hydraulic conductivity tests were performed to evaluate the effect of humic materials and landfill leachate on the hydraulic characteristics of the GCL. The result of swelling tests showed that the amount of humic materials and high electronic conductivity caused a decrease of the swelling of bentonite. This is expected to increase the hydraulic conductivity of GCL. The increasing of hydraulic conductivity observed for GCL permeated with 0-leachate was significantly higher than that of Y-leachate. This result shows that humic materials are obviously affecting with the increasing of hydraulic conductivity of GCL.