• 제목/요약/키워드: inorganic composites

검색결과 220건 처리시간 0.027초

숯과 황토 복합소재의 흡착성능 (Vapor Sorption Property of Charcoal-based Loess Composites)

  • 이원희
    • 한국가구학회지
    • /
    • 제17권3호
    • /
    • pp.87-94
    • /
    • 2006
  • The purpose of this study was to evaluate the relationships between the mixing ratio and water vapor sorption property of charcoal-based loess composites for furniture & building materials with environmental friendly. Charcoal-based loess composite can be easily made by blending method with water. But the composites had much brittle fracture pattern with the increase of charcoal content. That is due to the lack of loess that takes linkage role of composites. In water vapor sorption properties, adsorption ability of charcoal was about six times higher than that of loess. Therefore, vapor sorption ability was maximum at the mixture ratio of charcoal 80% and loess 20%. It is considered that wood charcoal based inorganic composite materials can be used for various purposes as a building interior & exterior and furniture members.

  • PDF

Thermal Behavior of Hwangto and Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.59-66
    • /
    • 2006
  • The thermal properties of wood flour, Hwangto, and maleated polyethylene (MAPE) reinforced HDPE composites were investigated in this study. The thermal behavior of reinforced wood polymer composites was characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. Hwangto and MAPE were used as an inorganic filler and a coupling agent, respectively. According to TGA analysis, the increase of wood flour level increased the thermal degradation of composites in the early stage, but decreased in the late stage. On the other hand, Hwangto reinforced composites showed the higher thermal stability than virgin HDPE, from the determination of differential peak temperature ($DT_p$). Decomposition temperature of wood flour and/or Hwangto reinforced composites increased with increase of heating rate. From DSC analysis, melting temperature of reinforced composites little bit increased with the addition of wood flour or Hwangto. As the loading of wood flour or Hwangto to HDPE increased, overall enthalpy decreased. It showed that wood flour and Hwangto absorbed more heat energy for melting the reinforced composites. Hwangto reinforced composites required more heat energy than wood flour reinforced composites and virgin HDPE. Coupling agent gave no significant effect on the thermal properties of composites. Thermal analyses indicate that composites with Hwangto are more thermally stable than those without Hwangto.

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.

무기계 킬레이트를 이용한 아크릴 점착제의 경화거동 및 점착 물성 (The Curing Behavior and PSA Performance of Acrylic Pressures Sensitive Adhesives using Aluminum Acetylacetonate)

  • 김소연;임동혁;오진경;조영식;박지원;김현중
    • 접착 및 계면
    • /
    • 제9권3호
    • /
    • pp.27-33
    • /
    • 2008
  • 무기계 킬레이트의 일종인 aluminum acetylacetonate (AlACA)를 점착제의 -COOH 당량비에 따라 0, 0.25, 0.5, 0.75, 1의 비율로 변화 시키고, 점착제는 acrylic acid의 함량을 3 wt%, 7 wt%, 10 wt%으로 변화를 시켜 그에 따른 경화거동을 살펴 보았다. 킬레이트의 함량이 증가하면서 가교 구조가 형성되고, 이에 따라 probe tack의 fibrillation이 줄어들고, peel strength도 줄어드는 경향을 보였다. SAFT의 경우 점착제의 acrylic acid 함량이 증가함에 따라 확연히 증가하였다. 본 연구 결과, aluminum acetylacetonate는 점착물성을 크게 변화시키지 않는 범위에서 점착제를 가교 시킬 수 있음을 확인하였다.

  • PDF

SO3를 다량 함유한 폐석고보드 미분말을 첨가한 3성분계 무기결합재의 길이변화 특성 (The Length Change Characteristic of the Ternary System Inorganic Composites adding the Waste Gypsum Board Micro Powder containing SO3 the great quantity)

  • 김윤미;박종필;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.65-66
    • /
    • 2012
  • The cement used in the construction industry of the manufacturing process, large amounts of the greenhouse gas, CO2 and is currently being studied for cement substitutes that reduce greenhouse gas issue. Therefore, the this study as a replacement for cement industrial by-product of blast furnace slag, red mud, silica fume and alkali-activator, using only inorganic composites without high-temperature calcination process were manufactured. The waste gypsum board micro powder added to compensate for the shrinkage cracks, the compressive strength and flow, and length change characteristics were investigated. Consequently, The setting time was shortened as GB added And liquidity was reduced. GB 2%, 7 days curing the added strength of specimens was the highest. Came out, and change the length of the Plain least.

  • PDF

Thermal Durability of Al2TiO5-Mullite Composites and Its Correlation with Microstructure

  • Kim, Hyung-Chul;Lee, Dong-Jin;Kweon, Oh-Seong;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.532-536
    • /
    • 2005
  • Thermal shock resistance of structural ceramics is a property that is difficult to quantity, and as such is usually expressed in terms of a number of empirical resistance parameters. These are dependant on the conditions imposed, but one method that can be used is the examination of density, Young's modulus and thermal expansion retention after quenching. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between $1000^{\circ}C$ and $1300^{\circ}C$. In this study, an excellent thermal shock-resistant material based on $Al_2TiO_5-mullite$ composites of various compositions was fabricated by sintering reaction from the individual oxides and adjusting the composition of $Al_2O_3TiO_2/SiO_2$ ratios. The characterization of the damage induced by thermal shock was done by measuring the evolution of the Young's modulus using ultrasonic analysis, density and thermal expansion coefficients.

Selective Laser Sintering of Alumina Using an Inorganic Binder Monoclinic $HBO_2$ and Post-Processing

  • 이인섭
    • 한국분말재료학회지
    • /
    • 제5권3호
    • /
    • pp.199-209
    • /
    • 1998
  • A new low melting inorganic binder, monoclinic $HBO_2$, has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at $120^{\circ}C$. It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate ($Al_{18}B_4O_{33}$), and multiphase ceramic composites, $A_{12}O_3-A_{14}B_2O_9$, were successfully developed by laser processing of alumina-monoclinic $HBO_2$ powder blends followed by post-thermal processing; both $Al_{18}B_4O_{33}$ and $A_{14}B_2O_9$ have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the $A_{12}O_3-A_{14}B_2O_9$ ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature ($1600^{\circ}C$). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.

  • PDF

Tribological Behaviour of the Si/SiC and the Si/SiC/Graphite Composites

  • Kim, In-Sub;Shin, Dong-Woo;So, You-Young;Lee, Byung-Ha
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.47-51
    • /
    • 1997
  • The dense sintered bodies of Si/SiC composite with various Si contents could be fabricated by changing the green density in the forming process. The Si/SiC/graphite composites with various graphite contents could be also fabricated by changing a graphite content in the starting composition. Their mechanical and tribological properties were characterized and wear mechanism was also studided. The hardness and strength of the Si/SiC and the Si/SiC/graphite were decreased with increasing the contents of free Si and graphite, respectively. However, the friction coefficient and specific wear rate had no specific relations to their hardness and strength. Adhesion of free Si was a main factor to determine a wear resistance of the Si/SiC composite. In the case of the Si/SiC/graphite, solid lubricationl and liquid reservoir of the graphite particles played the main role of the reduction of the friction force. In the torque test to estimate the possibility of practical of practical applications, the value of torque between the Al2O3 disk and Si/SiC/graphite disk was 1/6 lower compared with two $Al_2O_3$ disks on the basis of 100,000 cycles.

  • PDF

발포공정을 이용한 경량의 연질 세라믹 보온단열재의 제조 (Preparation of Flexible and Light Thermal Insulating Ceramic Composites Using Foaming Technology)

  • 이철태
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.59-66
    • /
    • 2015
  • 본 연구는 유기계 보온단열재의 장점인 경량성과 연질특성을 갖는 무기계 보온단열재의 제조를 위한 새로운 개념의 무기질 저온 발포 공정에 관한 것이다. 새로운 무기질 발포 공정은 섬유상인 해포석 및 규산알루미늄으로 하여금 발포체의 골격을 형성토록 하고, 저온에서 기체 발생이 가능한 발포제를 사용하여 무기질 섬유상 골격체가 팽창되어 공동을 형성하게 하며, 이 형성된 공동 속에 낮은 열전도도를 갖는 무기질 다포체인 팽창진주암을 채우는 것이다. 총괄적으로 무기질 재료를 고온 용융함이 없이 저온에서 무기질 발포체의 제조가 가능하게 된다. 이를 위해서 섬유상인 해포석의 해섬처리과정, 발포를 위한 섬유상 슬러리의 열처리공정 등 다양한 준비공정이 필요하며, 열처리 전 슬러리의 최적 조성물 조건이 요구된다. 제조된 발포체는 경량, 연질의 보온단열재로서의 겉보기 밀도, 내력 강도, 굽힘강도, 고내열성 등의 물성을 보여주었다.

무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성 (Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers)

  • 문소윤;이수연;임형미
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.368-374
    • /
    • 2019
  • 무기필러가 첨가된 현무암섬유 강화 에폭시 복합재료를 제조하여 그 특성을 평가하였다. 첨가된 무기필러는 각각 수산화마그네슘, 수산화알루미늄, 알루미나, 베마이트이며 이를 첨가제로한 에폭시 수지를 현무암섬유에 핸드레이업으로 함침시킨 후 hot pressing하여 수지 함침량이 30 wt%인 섬유복합재료를 제조하였다. LOI 평가 결과 BFRP의 LOI (28.9)는 에폭시 수지 (21.4)에 비해 향상된 것을 확인하였으며 무기필러가 첨가될 경우 그보다 더욱 향상되는 것을 확인하였다. 또한 무기필러가 첨가된 복합재료는 무기필러가 첨가되지 않은 복합재료에 비해 콘칼로리미터 시험에서 PHRR, THR, TSR 등이 감소하여 무기필러 첨가에 따른 난연 특성 향상을 확인하였다.