• Title/Summary/Keyword: inlet flow conditions

Search Result 601, Processing Time 0.025 seconds

Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor (테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구)

  • Lee, Hyeon Kwon;Lee, Sang Gun;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of $LiNiMnCoO_2$ (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.

Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop (자연순환 루프에서 이상유동 특성에 관한 예비실험 연구)

  • Kim, Jae-Cheol;Ha, Kwang-Soon;Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

Development of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 개발)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.314-321
    • /
    • 2020
  • In this work, a preliminary design of an inlet guide vane and runner for developing a 2.5 kW hydraulic turbine was conducted by using computational fluid dynamic analysis. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used to analyze the fluid flow in the hydraulic turbine. The hexahedral grid system was used to construct computational domain, and the grid dependency test was performed to obtain the optimal grid system. Velocity triangle diagram considering the flow angles of the inlet guide vane and runner was analyzed to obtain a basic geometry of the inlet guide vane and runner. Through modification of the preliminary design, the hydraulic performances of the turbine have improved under overall drop conditions. Especially, the efficiency and power of the turbine increased by 0.95% and 1.45%, respectively, compared to those of the reference model.

EFFECT OF TURBULENCE AT INLET BOUNDARY ON AIR MOVEMENT IN A ROOM

  • Lee, Heekwan;Hazim B. Awbi
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.162-164
    • /
    • 2000
  • The numerical simulation of air movement in a room using CFD (Computational Fluid Dynamics) requires a complicated set of input data, This includes physical data, such as space geometry, characteristics of supply air flow and contaminant source, etc. as well as computational domain. Among the input data, the boundary conditions related to the inlet are particularly crucial in order to achieve accurate computation results, although there are many other parameters which may also affect the results. (omitted)

  • PDF

The simulation on the characteristics of ventilation in the subway platform (지하철 승가장내의 환기 특성에 관한 해석적 연구)

  • Park, B.S.;Kim, H.Y.;Kim, Y.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.139-145
    • /
    • 2001
  • The purpose of present study is to find design parameters and operating conditions of the HVAC system in a subway platform. The simulation was carried out for the flow, heat and mass transfer for heating, ventilating and air-conditioning(HVAC) environments in the subway platform. The steady-state. incompressible flow assumption and standard $k-{\varepsilon}$ turbulence model are adopted. The location of HVAC air inlet above platform and the volume flow rate of curtain air released from inlet B are chosen as main parameters in this study. The results of present study are following: In the case of existence of train, the heat and contaminant released under the train have no effect on the average temperature and mass fraction of contaminant in the platform, but heat released on the train has influence on the average temperature in the platform. Train acts as an obstacle to exhaust the contaminant in the platform, but has good effect on the average temperature in the platform.

  • PDF

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

Numerical Analysis of Thermal Flow in HTS Cable Termination (고온초전도케이블 단말 저온조의 열유동해석)

  • 김도형;조승연;양형석;김동락;김승현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.163-166
    • /
    • 2003
  • Maintaining low temperature is very important in operating HTS cable termination in which Joule heat is generated at current lead. In this study, numerical analysis using FLUENT is performed to find an optimized flow conditions for effective cooling of HTS cable terminal system using subcooled liquid nitrogen (L$N_2$) as refrigerant. The variables considered here are mass flow rate of L$N_2$, location of inlet and diameter of inlet and outlet. Simplified models are investigated under these variables. Based on maximum temperatures in the cryostat, the configuration for effective cooling of HTS cable was determined.

  • PDF

Analysis of Flow Performance Factors According to Extreme Temperature Conditions of Hydrogen Inflow of FCEV Charging System Check Valve (FCEV 충전 시스템 체크밸브의 수소 유입 극한 온도 조건에 따른 유동 성능 인자 분석)

  • SEUNG HUN OH;HYUN KYU SUH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.514-525
    • /
    • 2023
  • This study conducted numerical simulations with the purpose of analyzing the impact of variations in outlet pressure conditions under extreme temperature conditions on the fluid dynamics and performance of a check valve utilized in hydrogen refueling systems. Under the extreme temperature conditions, changes in outlet pressure conditions of the check valve were investigated to analyze velocity distributions, pressure distributions, and temperature distributions in the operational and connection regions. The analysis results indicated that changes in outlet pressure had a significant influence on the internal temperature variation of the check valve. Furthermore, due to density variations in the connection region caused by the cooling effect of excessively cooled hydrogen, a bias in the primary flow direction towards the lower part of the valve outlet was observed in the outlet area. Through a comparison of the results of the valve's inherent flow performance, represented by the flow coefficient, it was observed that when the pressure difference between the inlet and outlet was below 0.37 MPa, sufficient flow was not ensured.