• Title/Summary/Keyword: injection modeling

Search Result 296, Processing Time 0.027 seconds

Phenomenological Combustion Modeling of a Direct Injection Diesel Engine with In-Cylinder Flow Effects

  • Im, Yong-H.;Huh, Kang-Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.569-581
    • /
    • 2000
  • A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.

  • PDF

Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures (복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링)

  • Yoon, Seon Jhin
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.

Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2 (이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향)

  • Han, Ahreum;Kim, Taehee;Kwon, Yikyun;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim (AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측)

  • Shin, Suk Shin;Song, Jingeun;Park, Jongho
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

Time-domain Large-signal Modeling of Injection-locked Fabry-Perot Laser Diode for WDM-PON (WDM-PON용 주입 잠금 패브리-페롯 레이저 다이오드의 시영역 대신호 모델링)

  • Lee, Seung-Hyun;Kim, Gun-Woo;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.74-81
    • /
    • 2010
  • A modeling methodology for the analysis of injection-locked Fabry-Perot laser diodes (FP-LDs), promising for cost-effective WDM-PON sources, is proposed. The time-domain large-signal model that is used is found to provide quite similar results to some experimental ones. With our methodology, we model characteristics of FP-LDs, such as influence of reflectivity at a facet and detuning on injection-locking. The eye diagram characteristics are also investigated. It is observed that the facet reflectivity at the injection side should be lower than 1% to provide stable operation in terms of good side-mode suppression ratio and independence from detuning between narrow-band injection noise and LD modes. It is also observed that good eye opening can be obtained for 155 Mbps modulation while the parameters such as the active region thickness should be properly optimized to obtain reasonable eye opening at 1.25 Gbps.

Experimental Study on implementation of injection molding process for speaker frame in LED TV (LED TV 스피커 프레임용 사출 성형공정 구현에 관한 실험적 연구)

  • Lee, Sun Kon;Kim, Sang Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-101
    • /
    • 2013
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. The objective of this study is to implement the best plastic injection molding process for LED TV speaker frame. Moldflow analysis and simulation of plastic injection molding process were carried out in order to predict optimal modeling operation conditions and then injection molded part was produced various type of resin temperature, filling time and injection pressure variation. the result was that the best injection molding condition is set as 60bar pressure, 2sec filling time and $310^{\circ}C$ degree. The study result would be useful to variety of plastic injection molding process.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Research for Magnesium Injection Molding Process (마그네슘 사출성형 공정에 관한 연구)

  • 강태호;김인관;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.882-885
    • /
    • 2002
  • Magnesium alloys are very attractive materials for appling to the development of autemobile parts or electric goods where light weight and higher stiffness. Due to higher ratio of strength vs. weight and stillness vs. weight, various magnesium alloys are well applied in much weight saving design applications though extrusion or die-casting process. However for the requisites of higher strength and weight savings, some new fabrication processes has been and it can be realized though the aid of injection modeling technology. To obtain the parametric data base for the injection molding process, various experiments were executed for AZ91D magnesium alloy. This paper propose the optimum condition of injection temperature, first and second pressure. the process was lined-up successfully often changing the injection unit. fluid pressure system from the conventional plastic injection molding process.

  • PDF

Modeling of the filling process during resin injection/compression molding

  • Chang, Chih-Yuan
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.207-221
    • /
    • 2007
  • The filling process of resin injection/compression molding (I/CM) can be divided into injection and compression phases. During the resin injection the mold is kept only partially closed and thus a gap is present between the reinforcements and the upper mold. The gap results in preferential flow path. After the gap is filled with the resin, the compression action initiates and forces the resin to penetrate into the fiber preform. In the present study, the resin flow in the gap is simplified by using the Stokes approximation, while Darcy's law is used to calculate the flow field in the fiber mats. Results show that most of the injected resins enter into the gap during the injection phase. The resin injection time is extremely short so the duration of the filling process is determined by the final closing action of the mold cavity. Compared with resin transfer molding (RTM), I/CM process can reduce the mold filling time or injection pressure significantly.

Modeling of Unified Power Flow Controllers Using a Current Injection Method for Transient Stability Analysis (전류 주입형 방식의 UPFC 모델을 이용한 과도 안정도 해석)

  • Kim, Chon-Hoe;Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.332-334
    • /
    • 2005
  • This paper presents a dynamic simulation of the unified power flow controller (UPFC) using a current injection method. Flexible AC Transmission System (FACTS) devices give more flexibility of control for security and economic operation of power systems. Diffculties of modeling UPFC in the conventional dynamic simulation programs arise from the fact that the injected voltage by the series inverter is superimposed on the shunt inverter side voltage. A solution can be a current injection method, in which a serial part of UPFC is converted to a parallel equivalent circuit using source transformation, and two current sources affect each other at every time step. To verify efficiency of this method, the proposed model is applied for the transient analysis of an example power system.

  • PDF