• Title/Summary/Keyword: injection condition

Search Result 1,284, Processing Time 0.026 seconds

An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis (DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구)

  • Lee Changhee;Lee Kihyung;Lee Changsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test (75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.129-135
    • /
    • 2011
  • A study of efficient plume cooling by core water injection type was performed by computational fluid dynamics. A side injection type is well known, on the contrary, a core injection type is not well known. In order to figure out the characteristics of core injection type, several calculations were performed by computational fluid dynamics along various mass flow rates and locations of water injection. On the basis of analysis it was the adequate cooling condition that water mass flow rate to total mass flow rate was two times at least and location of water injections was L/De=1.2.

Injection Flow Rate Improvement of Injectors for DME Common-rail Systems (DME 커먼레일 시스템을 위한 인젝터 분사 유량 개선)

  • Lee, G.S.;Shin, S.S.;Park, J.H.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, injection flow rates and material of the solenoid sealing of the injectors were improved for the development of a di-methyl Ether(DME) common-rail system. To deliver the same amount of energy provided by injection pressure of diesel $P_{inj}$ = 160 MPa, the DME injectors need to have larger diameter of nozzle hole and more No. of hole at low injection pressure of $P_{inj}$ = 40~50 MPa. The simplified nozzle flow model, which takes account of nozzle geometry and injection condition, was employed in order to design the concept of a injector nozzle such as No. of hole, diameter of hole and diameter of needle seat, etc. Injection amount and rate were tested by diesel and DME test stand. As a result, the diameter of nozzle hole were enlarged by 0.25 mm. The diameter of the orifice in the high pressure line was increased by 1.0 mm to maintain hydraulic force in the nozzle. The material of the solenoid sealing was changed to HNBR, which was strong against the corrosive. Experimental results showed that the injection amount of the DME injector drastically increased by 191.9% comparison to that of diesel at $P_{inj}$ = 40 MPa.

The study of defrosting performance on automobile Windshield through different injection angle (Different injection angle에 따른 자동차 전면 유리 제상성능 연구)

  • Kang, Hyu-Goo;Lee, Kum-Bae;Kader, Md. Faisal;Oh, Gyu-Nam
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2454-2459
    • /
    • 2008
  • The objective of this paper is to find out the most effective injection angle for the purpose of deicing through SC/Tetra, a commonly used CFD software. Nowadays, vehicles are developed giving priority to an improved interior which emphasizes a pleasant environment and thermal comfort without decreasing the basic performance. Clear visibility is one of the most important phenomenon. The primary factors which affect the efficiency of deicing are 3D geometry of Defrost Nozzle, the inlet velocity and temperature of the flow and the injection angle. However in this paper, all these parameters are optimized by changing the injection angle. A wide range of injection angle from 5 degree to 50 degree have been considered for analysis. A very good defrosting performance has been achieved with 45 degree injection angle which can satisfy the condition of NHTSA.

  • PDF

Analysis of the Flow in LOX Manifold in Liquid Rocket

  • Kim, Hakjong;Byun, Yung-Hwan;Yang Na
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.142-147
    • /
    • 2004
  • The flow in the LOX manifold of liquid rocket has been investigated using a CAE technique with an objective of economical modeling of injection holes in order to reduce the overall computational cost of flow analysis during the optimal rocket design procedure. The computational geometry is very close to that of the actual rocket design and the flow condition through the injection holes resembles that in the actual manifold of the liquid rocket. The result shows that the flow in the plane just above the injection holes is not uniformly distributed in terms of pressure and mass flow rate and this is attributed to the large-scale flow patterns present the LOX manifold. Thus, the flow physics should be understood correctly before making any attempt to model the injection holes. In the present study, several boundary conditions which were designed to effectively replace the presence of injection holes have been tested and it was found that a simple modeling can be possible by mimicking the actual geometry of the injection holes. By using this simple injection hole modeling, it was able to obtain about 30% reduction in computational cost but it was still able to reproduce the flow patterns correctly. Also the flow has been analyzed after incorporating a couple of different types of pre-distributors in LOX manifold and the effect of those will be discussed.

  • PDF

Effect of Injection Temperature Condition on Root Mean Square and Peak-to-Valley of F-theta Lens (사출온도조건이 에프세타 렌즈의 표면조도와 표면형상에 미치는 영향에 관한 연구)

  • Park, Yong-Woo;Moon, Seong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.114-120
    • /
    • 2021
  • This study is focused on the root mean square and peak-to-valley based on the injection conditions of the f-theta lens, one of the main components of laser printers and laser scanning systems. The f-theta lens of an aspherical plastic lens requires ultra-preaction. Injection molding is typically used for the mass production of aspherical plastic lenses. In the injection-molding method, the resin in the lens shape is filled with the resin after melting the plastic pellets at a constant temperature and then cooled. It is necessary to maintain a uniform injection molding system to produce high-quality lenses. These injection-molding systems are influenced by different factors, such as pressure, speed, temperature, mold, and cooling. It is possible to obtain a lens that exhibits the optical characteristics required to achieve harmony. We investigated the root mean square and peak-to-valley caused by variations in temperature, a critical parameter in the melting and cooling of plastic resins generated inside and outside the injection mold.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

A Study on the spray characteristics according to injection conditions for LPG injector (분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구)

  • Ryu, Jea-Duk;Yoon, Yong-Won;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF