• 제목/요약/키워드: initial water content

검색결과 534건 처리시간 0.032초

풍화잔적토의 불포화전단강도 예측 및 특성연구 (Characteristics and Prediction of Shear Strength for Unsaturated Residual Soil)

  • 이인모;성상규;양일순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.377-384
    • /
    • 2000
  • The characteristics and prediction model of the shear strength for unsaturated residual soils was studied. In order to investigate the influence of the initial water content on the shear strength, unsaturated triaxial tests were carried out varying the initial water content, and the applicability of existing prediction models for the unsaturated shear strength was testified. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the initial water content. A sample compacted in the lower initial water content needs a higher suction to get the same degree of saturation while the shear strength of a sample with the lower initial water content displays a lower value. In order to apply the existing prediction models of the unsaturated shear strength to granite residual soils, a correction coefficient, α, on the internal friction angle, ø'was added.

  • PDF

Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository

  • Lee, Jae-Owan;Cho, Won-Jin;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.139-150
    • /
    • 1999
  • The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/$\textrm{cm}^2$ to 190.2 Kg/$\textrm{cm}^2$ under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled off to nearly constant value.

  • PDF

준설토의 침강형태에 관한 연구 (Settling Mode of the Dredged Soil)

  • 윤상묵;장병욱;차경섭
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.63-73
    • /
    • 2003
  • The settling of the dredged soil may vary with mineral composition, grain size distribution, initial water content and salt concentration of suspension of the site. A series of settling column test was performed to investigate the behaviour of solid suspension material from dredging and reclamation. Settling mode was divided into four types from the observation of interface and settling curves of clay minerals and marine clay samples, and the relationship charts of salt concentration and the initial water content were established to use in the dredging operation with any salt concentration. The critical initial water content which was defined as a threshold of zone settling and the consolidation settling was varied with salt concentration of water and was proportional to the plasticity of soil in sea water.

시공조건이 시멘트계 고화토의 투수계수에 미치는 영향 (Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications)

  • 정문경;김강석;우제윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

경량기포혼합 준설토의 강도특성 (Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam)

  • 박건태;김주철;윤길림;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

Drying Characteristics and Physicochemical Properties of Semi-Dried Restructured Sausage Depend on Initial Moisture Content

  • Kim, Dong-Hyun;Kim, Yea Ji;Shin, Dong-Min;Lee, Jung Hoon;Han, Sung Gu
    • 한국축산식품학회지
    • /
    • 제42권3호
    • /
    • pp.411-425
    • /
    • 2022
  • Semi-dried restructured sausages are restructured meat products with a high nutritional and economic value. However, excessively long drying times can have negative effects on the energy consumption, texture, and sensory properties of semi-dried restructured sausages. The objective of this study was to investigate the effects of different water contents on the drying and physicochemical characteristics of semi-dried restructured sausages. Sausages were prepared with different initial moisture contents (0%-50%) and drying time (0-580 min). The drying characteristics, including the drying rate, effective moisture diffusivity, and water activity of sausage were significantly improved as the initial moisture content was increased. When the initial moisture content of the sausage was 50%, physicochemical properties, such as color, porosity, shear force, and volatile basic nitrogen, were improved the most along with the decreased drying time. Scanning electron microscopy data showed greater porosity and pore size in sausages with the increase of initial moisture content. Collectively, our data suggest that an increase in the initial moisture content of semi-dried restructured sausages improves their drying characteristics and physicochemical properties.

과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성 (Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents)

  • 김현주;이경숙;이준환
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.53-64
    • /
    • 2005
  • 지반설계에 있어 지반거동은 일반적으로 단순화된 선형탄성이나 완전소성으로 간주되어 적용되고 있으나, 비선형 응력-변형률 거동, 응력이력 및 함수비 등의 현장 지반조건 또한 정밀한 지반설계를 위해서는 적절히 반영되어야 한다. 본 연구에서는 삼축압축시험과 공진주시험을 포함한 일련의 실내시험을 통하여 실트함유량, 상대밀도, 응력상태등 다양한 지반조건과 과압밀비 및 함수비의 변화와 같은 현장 지반조건을 고려하여 사질토의 강도 및 강성도 특성을 분석하였다. 그 결과 최대전단강도 및 초기전단탄성계수에 대한 과압밀의 영향은 미소하게 나타났으나, 초기 미소변형률 이후부터 파괴까지의 비선형 탄성구간에서는 과압밀의 영향이 무시할 수 없는 영향인자임을 확인할 수 있었다. 함수비의 경우 구속압과 상대밀도가 낮은 경우 함수비가 증가함에 따라 초기전단탄성계수는 세립분 증가와 함께 감소하였으며, 구속압이 증가할수록 함수비의 영향은 감소하였다.

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

초기함수비 변화에 의한 풍화잔류토의 응력-변형률 해석 (Analysis of Stress-Strain of Weathered Residual Granite Soil with Variation of the Initial Water Content)

  • 김찬기
    • 한국농공학회지
    • /
    • 제41권2호
    • /
    • pp.80-91
    • /
    • 1999
  • This paper presents the stress-strain , volumetric strain characteristics of the Pocheon weathered residual granite soil with variation of the initial water content under drained conditions. A series of consolidated drained triaxial compressiion tests and isotrpc compression tests with various initial water content on specimens were performed. All material parameters of Lade's double work hardening model were determined by using the results of tests. Most aspects of the soil behavior measured in the triaxial compression tests were reproduced with good accuracy by the constitutive model . Therefore double work hardening model has been shown to be applicable to weathered residual granite soil.

  • PDF