• Title/Summary/Keyword: initial model

Search Result 5,226, Processing Time 0.03 seconds

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.

Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings

  • Thomas Weikert;Saikiran Rapaka;Sasa Grbic;Thomas Re;Shikha Chaganti;David J. Winkel;Constantin Anastasopoulos;Tilo Niemann;Benedikt J. Wiggli;Jens Bremerich;Raphael Twerenbold;Gregor Sommer;Dorin Comaniciu;Alexander W. Sauter
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.994-1004
    • /
    • 2021
  • Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. Materials and Methods: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. Results: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). Conclusion: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Analysis of Infrared Characteristics According to Common Depth Using RP Images Converted into Numerical Data (수치 데이터로 변환된 RP 이미지를 활용하여 공동 깊이에 따른 적외선 특성 분석)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aging and damaged underground utilities cause cavity and ground subsidence under roads, which can cause economic losses and risk user safety. This study used infrared cameras to assess the thermal characteristics of such cavities and evaluate their reliability using a CNN algorithm. PVC pipes were embedded at various depths in a test site measuring 400 cm × 50 cm × 40 cm. Concrete blocks were used to simulate road surfaces, and measurements were taken from 4 PM to noon the following day. The initial temperatures measured by the infrared camera were 43.7℃, 43.8℃, and 41.9℃, reflecting atmospheric temperature changes during the measurement period. The RP algorithm generates images in four resolutions, i.e., 10,000 × 10,000, 2,000 × 2,000, 1,000 × 1,000, and 100 × 100 pixels. The accuracy of the CNN model using RP images as input was 99%, 97%, 98%, and 96%, respectively. These results represent a considerable improvement over the 73% accuracy obtained using time-series images, with an improvement greater than 20% when using the RP algorithm-based inputs.

Science Teachers' Brain activation and functional connectivity during scientific observation on the biological phenomena (생명현상에 대한 과학적 관찰에서 나타나는 과학 교사들의 두뇌 활성 및 기능적 연결)

  • Lee, Jun-Ki;Byeon, Jung-Ho;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.730-740
    • /
    • 2009
  • The purpose of this study was to investigate secondary science teachers' brain activation and functional connectivity during scientific observation on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate science teachers' brain activities during the tasks, 3.0T fMRI system with block design was used to measure BOLD signals in their brains. The SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. The results have shown that the left inferior frontal gyrus, the bilateral superior parietal lobule, the left inferior parietal lobule, the left precuneus, the left superior occipital gyrus, the right middle occipital gyrus, the right precuneus, the left inferior occipital gyrus and bilateral fusiform gyrus were significantly activated during participants' scientific observation. The network model consisted of eleven nodes (ROIs) and its ten connections. These results suggested the notion that scientific observation needs a connective cooperation among several brain regions associated with observing over just a sensory receiving process.

Design of Digital Phase-locked Loop based on Two-layer Frobenius norm Finite Impulse Response Filter (2계층 Frobenius norm 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • Sin Kim;Sung Shin;Sung-Hyun You;Hyun-Duck Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • The digital phase-locked loop(DPLL) is one of the circuits composed of a digital detector, digital loop filter, voltage-controlled oscillator, and divider as a fundamental circuit, widely used in many fields such as electrical and circuit fields. A state estimator using various mathematical algorithms is used to improve the performance of a digital phase-locked loop. Traditional state estimators have utilized Kalman filters of infinite impulse response state estimators, and digital phase-locked loops based on infinite impulse response state estimators can cause rapid performance degradation in unexpected situations such as inaccuracies in initial values, model errors, and various disturbances. In this paper, we propose a two-layer Frobenius norm-based finite impulse state estimator to design a new digital phase-locked loop. The proposed state estimator uses the estimated state of the first layer to estimate the state of the first layer with the accumulated measurement value. To verify the robust performance of the new finite impulse response state estimator-based digital phase locked-loop, simulations were performed by comparing it with the infinite impulse response state estimator in situations where noise covariance information was inaccurate.

The Coexistance of Online Communities: An Agent-Based Simulation from an Ecological Perspective (온라인 커뮤니티 간 공존: 생태학적 관점의 에이전트 기반 시뮬레이션)

  • Luyang Han;Jungpil Hahn
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.115-136
    • /
    • 2017
  • Online communities have become substantial aspects of people's daily lives. However, only a few communities succeed and attract the majority of users, whereas the vast majority struggle for survival. When various communities coexist, important factors should be identified and examined to maintain attraction and achieve success. The concept of coexistence as been extensively explored in organizational ecology literature. However, given the similarities and differences between online communities and traditional organizations, the direct application of organizational theories to online contexts should be cautiously explored. In this study, we follow the roadmap proposed by Davis et al. (2007) in conducting agent-based modeling and simulation study to develop a novel theory based on the previous literature. In the case of two coexisting communities, we find that community size and participation costs can significantly affect the development of a community. A large community can attract a high number of active members who frequently log in. By contrast, low participation costs can encourage the reading and posting behaviors of members. We also observe the important influence of the distribution of interests on the topic trends of communities. A community composed of a population that focuses on only one topic can quickly converge on the topic regardless of whether the initial topic is broad or focused. This simulation model provides theoretical implications to literature and practical guidance to operators of online communities.

Determination and prediction of amino acid digestibility in brown rice for growing-finishing pigs

  • Qing Ouyang;Rui Li;Ganyi Feng;Gaifeng Hou;Xianji Jiang;Xiaojie Liu;Hui Tang;Ciming Long;Jie Yin;Yulong Yin
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1474-1482
    • /
    • 2024
  • Objective: The experiment aimed to determine the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in 10 brown rice samples fed to pigs, and to construct predictive models for SID of CP and AA based on the physical characteristics and chemical composition of brown rice. Methods: Twenty-two cannulated pigs (initial body weight: 42.0±1.2 kg) were assigned to a replicated 11×3 incomplete Latin square design, including an N-free diet and 10 brown rice diets. Each period included 5 d adaptation and 2 d ileal digesta collection. Chromic oxide was added at 0.3% to all the diets as an indigestible marker for calculating the ileal CP and AA digestibility. Results: The coefficients of variation of all detected indices for physical characteristics and chemical composition, except for bulk weight, dry matter (DM) and gross energy, in 10 brown rice samples were greater than 10%. The SID of CP, lysine (Lys), methionine, threonine (Thr), and tryptophan (Trp) in brown rice was 77.2% (62.6% to 85.5%), 87.5% (80.3% to 94.3%), 89.2% (78.9% to 98.9%), 55.4% (46.1% to 67.6%) and 92.5% (86.3% to 96.3%), respectively. The best prediction equations for the SID of CP, Lys, Thr, and Trp were as following, SIDCP = -664.181+8.484×DM (R2 = 0.40), SIDLys = 53.126+6.031×ether extract (EE)+0.893×thousand-kernel volume (R2 = 0.66), SIDThr = 39.916+7.843×EE (R2 = 0.41), and SIDTrp = -361.588+4.891×DM+0.387×total starch (R2 = 0.85). Conclusion: Overall, a great variation exists among 10 sources of brown rice, and the thousand-grain volume, DM, EE, and total starch can be used as the key predictors for SID of CP and AA.

CT Quantitative Analysis and Its Relationship with Clinical Features for Assessing the Severity of Patients with COVID-19

  • Dong Sun;Xiang Li;Dajing Guo;Lan Wu;Ting Chen;Zheng Fang;Linli Chen;Wenbing Zeng;Ran Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.859-868
    • /
    • 2020
  • Objective: To investigate the value of initial CT quantitative analysis of ground-glass opacity (GGO), consolidation, and total lesion volume and its relationship with clinical features for assessing the severity of coronavirus disease 2019 (COVID-19). Materials and Methods: A total of 84 patients with COVID-19 were retrospectively reviewed from January 23, 2020 to February 19, 2020. Patients were divided into two groups: severe group (n = 23) and non-severe group (n = 61). Clinical symptoms, laboratory data, and CT findings on admission were analyzed. CT quantitative parameters, including GGO, consolidation, total lesion score, percentage GGO, and percentage consolidation (both relative to total lesion volume) were calculated. Relationships between the CT findings and laboratory data were estimated. Finally, a discrimination model was established to assess the severity of COVID-19. Results: Patients in the severe group had higher baseline neutrophil percentage, increased high-sensitivity C-reactive protein (hs-CRP) and procalcitonin levels, and lower baseline lymphocyte count and lymphocyte percentage (p < 0.001). The severe group also had higher GGO score (p < 0.001), consolidation score (p < 0.001), total lesion score (p < 0.001), and percentage consolidation (p = 0.002), but had a lower percentage GGO (p = 0.008). These CT quantitative parameters were significantly correlated with laboratory inflammatory marker levels, including neutrophil percentage, lymphocyte count, lymphocyte percentage, hs-CRP level, and procalcitonin level (p < 0.05). The total lesion score demonstrated the best performance when the data cut-off was 8.2%. Furthermore, the area under the curve, sensitivity, and specificity were 93.8% (confidence interval [CI]: 86.8-100%), 91.3% (CI: 69.6-100%), and 91.8% (CI: 23.0-98.4%), respectively. Conclusion: CT quantitative parameters showed strong correlations with laboratory inflammatory markers, suggesting that CT quantitative analysis might be an effective and important method for assessing the severity of COVID-19, and may provide additional guidance for planning clinical treatment strategies.

Angioembolization performed by trauma surgeons for trauma patients: is it feasible in Korea? A retrospective study

  • Soonseong Kwon;Kyounghwan Kim;Soon Tak Jeong;Joongsuck Kim;Kwanghee Yeo;Ohsang Kwon;Sung Jin Park;Jihun Gwak;Wu Seong Kang
    • Journal of Trauma and Injury
    • /
    • v.37 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • Purpose: Recent advancements in interventional radiology have made angioembolization an invaluable modality in trauma care. Angioembolization is typically performed by interventional radiologists. In this study, we aimed to investigate the safety and efficacy of emergency angioembolization performed by trauma surgeons. Methods: We identified trauma patients who underwent emergency angiography due to significant trauma-related hemorrhage between January 2020 and June 2023 at Jeju Regional Trauma Center. Until May 2022, two dedicated interventional radiologists performed emergency angiography at our center. However, since June 2022, a trauma surgeon with a background and experience in vascular surgery has performed emergency angiography for trauma-related bleeding. The indications for trauma surgeon-performed angiography included significant hemorrhage from liver injury, pelvic injury, splenic injury, or kidney injury. We assessed the angiography results according to the operator of the initial angiographic procedure. The term "failure of the first angioembolization" was defined as rebleeding from any cause, encompassing patients who underwent either re-embolization due to rebleeding or surgery due to rebleeding. Results: No significant differences were found between the interventional radiologists and the trauma surgeon in terms of re-embolization due to rebleeding, surgery due to rebleeding, or the overall failure rate of the first angioembolization. Mortality and morbidity rates were also similar between the two groups. In a multivariable logistic regression analysis evaluating failure after the first angioembolization, pelvic embolization emerged as the sole significant risk factor (adjusted odds ratio, 3.29; 95% confidence interval, 1.05-10.33; P=0.041). Trauma surgeon-performed angioembolization was not deemed a significant risk factor in the multivariable logistic regression model. Conclusions: Trauma surgeons, when equipped with the necessary endovascular skills and experience, can safely perform angioembolization. To further improve quality control, an enhanced training curriculum for trauma surgeons is warranted.