• Title/Summary/Keyword: initial irreversible capacity

Search Result 32, Processing Time 0.03 seconds

The Initial Irreversible Capacity of the First Doping/Undoping of Lithium into Carbon

  • Doh, Chil-Hoon;Kim, Hyun-Soo;Moon, Seong-In
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.148-153
    • /
    • 2001
  • The initial irreversible capacity, $Q_i$, is one of the parameters to express the material balancing of the cathode to anode. We introduced new terms, which are the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface ($Q_{is}$), to express precisely the irreversibility of an electrode/electrolyte system. Two terms depended on kinds of active-materials and compositions of the electrode, but did not change with charging state. MPCF had the highest value of IIE and the lowest value of $Q_{is}$ in 1M $LiPE_6$/EC + DEC (1 : 1 volume ratio) electrolyte. IIE value of $LiCoO_2$ electrode was 97-98%, although the preparation condition of the material and the electrolyte were different. $Q_{is}$ value of $LiCoO_2$ was 0~1 mAh/g. MPCF-$LiCoO_2$ cell system had the lowest of the latent capacity. $Q_{is}$ value increased slightly by adding conductive material. IIE and $Q_{is}$ value varied with the electrolyte. By introducing PC to EC+DEC mixed solvent, IIE values were retained, but $Q_{is}$ increased. In case of addition of MP, IIE value increased and $Q_{is}$ value also increased a little.

  • PDF

A Study on the Initial Irreversible Capacity of Lithium Intercalation Using Gradually Increasing State of Charge

  • Doh, Chil-Hoon;Jin, Bong-Soo;Park, Chul-Wan;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.189-193
    • /
    • 2003
  • Initial irreversible capacity (IIC) can be defined by means of the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface (IICs) with the linear-fit range of the intercalation so as to precisely express the irreversibility of an electrode-electrolyte system. Their relationship was IIC = Qc - Q$_{D}$ = (IIE$^{-1}$ - 1) Q$_{D}$ + IICs in the linear-fit range of IIE. Here, Qc and Qd signify charge and discharge capacity, respectively, based on a complete lithium ion battery cell. Charge indicates lithium insertion to carbon anode. Two terms of IIE and IICs depended on the types of active materials and compositions of the electrode and electrolyte but did not change with charging state. In an ideal electrode-electrolyte system, IIE and IICs would be 100%, 0 mAh/g for the electrode and mAh for the cell, respectively. These properties can be easily obtained by the Gradual Increasing of State of Charge (GISOC).OC).

The Initial Irreversible Capacity of the Lithium Ion Battery System Using by the Gradual Control of State of Charge

  • Doh, Chil-Hoon;Choi, Sang-Jin;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.173-177
    • /
    • 2002
  • Electrochemical characteristics of a graphite/lithium and a $LiCoO_2/lithium$ half cell and a $graphite/LiCoO_2$ full cell were analyzed using a GCSOC (gradual control test of the state of charge) technique. The IIE (initial intercalation coulombic efficiency), which represents lithium intercalation property of the electrode material, and the $lIC_s$ (initial irreversible capacity by the surface), which represents irreversible reaction between the electrode surface and the electrolyte were obtained from the GCSOC analysis. Linear-fittable capacity ranges of IIE of graphite and $LiCoO_2$ electrodes were 370 and 150 mAh/g, respectively, based on material weight. The value of lIE for graphite and $LiCoO_2$ electrodes were $93-94\%$ and $94-95\%$, respectively. The value of IICs for graphite and $LiCoO_2$ electrodes were 15-17 mAh/g and 0.3-1.7 mAh/g, respectively. The value of IIE for $graphite/LiCoO_2$ full cell, used GX25 and DJG311 as a graphite, was $89-90\%$ that lower than that for the half cells. Parameters of IIE and IICs can also be used to represent not only half cell but also full cell.

Initial Electrochemical Insertion/Desertion of Lithium into Hard Carbon

  • Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Soo;Jin, Chang-Soo;Jin, Bong-Soo;Eom, Seung-Wook
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.36-40
    • /
    • 2000
  • The initial irreversible capacity (IIC) of a hard carbon during the charge/discharge reaction is strongly affected by both the initial irreversible capacity on the carbon surface $(IIC_S)$ and the initial irreversible lithium insertion into carbon $(IIC_B)$. The initial coulombic efficiency of the insertion and the desertion of lithium (IIE) can be used as a performance to classify $IIC_B$ of the carbon. The $IIC_B$ was proportional to the specific discharge capacity with a slope, $IIE^{-1}$ - 1. The IIE of hard carbon had four regions. $IIE_A$ for the region of 0~95 mAh/g of $Q_{D1}$ was 60.2%. $IIE_B$ and $IIE_C$ for the regions of 95~172 mAh/g and 172~308 mAh/g had 84.9% and 91.5%, respectively. $IIE_D$ was appeared above 308 mAh/g. But, the $IIE_D$ was reduced to 82.1% compared with $IIE_C$. These IIE might be corresponding to lithium desertion from carbon at the region of 0~172 mAh/g range, lithium desertion from the micropore of carbon at the region of 172~308 mAh/g range, and to the lithium stripping of the plated lithium for the region above 308 mAh/g, respectively.

  • PDF

Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity (EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.

Studies of the Passivation Film as a Function of the Concentration of Electrolyte in Lithium-ion Battery

  • Jeong, Gwang Il;Jeong, Myeong U;Kim, U Seong;Kim, Sin Guk;Seong, Yong Eun;Choe, Yong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.189-193
    • /
    • 2001
  • The irreversible capacities caused by the reduction of solvent on the surface of a negative electrode (KMFC:Kawasaki Mesophase Fine Carbon) were examined during the initial cycle in ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte solut ions at various concentrations of LiPF6. Chronopotentiograms, linear sweep voltammograms, and impedance spectra clearly showed differences in irreversible capacity and that those differences are related to the concentration of electrolyte during the initial charge. These differences were caused by the amount of solvent decomposition as a function of the concentration of LiPF6 electrolytic salt. The data are discussed with reference to the concentration of electrolytic salt and the properties of passivation film formed by solvent decomposition.

Pretreatment of SiO/C Composite Anode of Lithium ion Secondary Battery for High coulombic Efficiency and High Specific Capacity (리튬이차전지용 산화실리콘-흑연 복합체 고효율 음극의 전처리 특성)

  • Shin, Hye-Min;Veluchamy, Angathevar;Kim, Dong-Hun;Chung, Young-Dong;Kim, Hyo-Seok;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.43-44
    • /
    • 2007
  • SiO and graphite composite has been prepared by adopting high energy ball milling technique. The anode material shows high initial discharge and charge capacity values of 1138 and 568 mAh/g, respectively. Since the materials formed during initial discharge process the nano silicon/$Li_4SiO_3\;and\;Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversible capacity$(Li_2O)$ will deliver higher reversible capacity. In this study, pretreatment method of constant current-constant voltage (CC-CV) Provided high coulombic efficiency of SiO/C composite electrode removing the greater part of irreversible capacity.

  • PDF

Development of Silicon Coated by Carbon with PVDF Precursor and Its Anode Characteristics for Lithium Batteries (PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo;Choi, Im-Goo;Park, Cheol-Wan;Lee, Kyeong-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.636-643
    • /
    • 2006
  • Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

The Removal of Pb by Plants (식물을 이용한 납(Pb) 제거)

  • Cho, Moon-Chul;Lee, Sang-Hwa;Park, Young-Seek;Suh, Kuen-Hack;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.269-273
    • /
    • 2001
  • Biosorption of Pb was evaluated for plants, Persicaria chinensis, Oenanthe javanica and Salvinia natnas. The adsorption equilibrium was reached in about 1hr for Pb and the highest adsorption capacity was 150mg Pb/g biomass at S.natans. Pb adsorption process showed a pseudo second order irreversible reaction. The highest initial adsorption rate was 2000mg pb/g biomass/hr at O.javanica. In spite of pH variation, Pb adsorption capacity by was selection, Pb was selectively adsorved. The selectivity of mixture solution showed the adsorption order of Pb>Cu>Cr>Cd. The Pb adsorption capacity of P. chinensis pretreated with NaOH was increased by 30% in comparison with that of no treatment.

  • PDF