• 제목/요약/키워드: initial elastic stiffness

검색결과 112건 처리시간 0.023초

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

일체식 교대 교량의 파일-교대 연결부 거동에 관한 실험적 연구 (Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge)

  • 김상효;윤지현;안진희;이상우
    • 대한토목학회논문집
    • /
    • 제29권6A호
    • /
    • pp.651-659
    • /
    • 2009
  • 본 연구는 일체식 교대 교량의 파일-교대 연결부의 거동에 관한 것이다. 본 연구에서는 일체식 교대 교량 연결부의 강체거동을 위하여 교대에 매입된 파일(H형강)에 관통철근을 배치한 형태, 스터드 전단연결재를 설치한 형태의 두 가지의 파일-교대 연결부를 제안하였다. 제안된 파일-교대 연결부의 거동 평가를 위하여 제안된 연결부가 설치된 파일-교대 축소모형 시험체와 일체식 교량 설계지침에서 제시한 연결부가 설치된 파일-교대 축소모형 시험체를 제작하여 하중재하시험을 수행하였다. 하중재하시험 결과, 모든 시험체에서 탄성영역 내의 초기강성은 일반적인 일체식 교대 교량에 적용이 가능할 정도로 나타났다. 그러나 항복 이후 강성과 하중저항 성능, 균열진전양상, 회전 강성 및 지압강도 측면에서 비교한 결과, 본 연구에서 제안한 파일-교대 연결부 방식이 일체식 교대교량의 파일 연결부의 강체거동에 더욱 효과적인 것으로 평가되었다.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

폼 충전 FRP 바닥판의 약축방향 정적거동 특성 (Static Behavio in Weak Axis of FRP Bridge Deck Filled With a Foam)

  • 지광습;김병민;황윤국;이영호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.906-913
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of glass fiber reinforced polymer(GFRP) is investigated using both experiments and analysis. While the load-displacement behavior of the deck in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. In order to imporve the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and investigated experimentally the static behavior of the orthotropic bridge deck which is made from GFRP and polyurethane foam. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of $10^{-3}$, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties.

  • PDF

유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측 (Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model)

  • 원성연;김영석;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

화이버 요소를 이용한 3차원 강구조물의 비선형 비탄성 해석 (Nonlinear Inelastic Analysis of 3-Dimensional Steel Structures Using Fiber Elements)

  • 김승억;오정렬
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.347-356
    • /
    • 2006
  • 본 논문에서는 단면상의 화이버 요소를 사용하여 3차원 강구조물의 점진적인 소성화를 고려하는 실용적인 비선형 비탄성 해석방법을 개발하였다. 부재의 p-$\delta$, p-$\Delta$ 등의 기하비선형은 안정함수로 고려하였다. 잔류응력은 단면상에 있는 화이버 요소에 초기응력을 가하여 고려하였다. 각 하중 단계에서 탄성상태인 단면을 계산하여 축강성과 휨강성을 직접 결정함으로서 점진적인 소성화를 고려하였다. 각 화이버 요소의 응력 변화를 계산하여 변형률 반전효과를 고려하였다. 제안된 해석 방법은 3차원 강구조물의 실용적인 해석 및 설계에 유용하게 사용될 것이라 판단한다.