• Title/Summary/Keyword: initial depth

Search Result 848, Processing Time 0.025 seconds

Multiple Color and ToF Camera System for 3D Contents Generation

  • Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • In this paper, we present a multi-depth generation method using a time-of-flight (ToF) fusion camera system. Multi-view color cameras in the parallel type and ToF depth sensors are used for 3D scene capturing. Although each ToF depth sensor can measure the depth information of the scene in real-time, it has several problems to overcome. Therefore, after we capture low-resolution depth images by ToF depth sensors, we perform a post-processing to solve the problems. Then, the depth information of the depth sensor is warped to color image positions and used as initial disparity values. In addition, the warped depth data is used to generate a depth-discontinuity map for efficient stereo matching. By applying the stereo matching using belief propagation with the depth-discontinuity map and the initial disparity information, we have obtained more accurate and stable multi-view disparity maps in reduced time.

Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map (라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법)

  • Choi, Hansol;Lee, Jongseok;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • This paper proposes a method for generating dense depth map using information of color images and depth map generated based on lidar based on self-organizing map. The proposed depth map upsampling method consists of an initial depth prediction step for an area that has not been acquired from LiDAR and an initial depth filtering step. In the initial depth prediction step, stereo matching is performed on two color images to predict an initial depth value. In the depth map filtering step, in order to reduce the error of the predicted initial depth value, a self-organizing map technique is performed on the predicted depth pixel by using the measured depth pixel around the predicted depth pixel. In the process of self-organization map, a weight is determined according to a difference between a distance between a predicted depth pixel and an measured depth pixel and a color value corresponding to each pixel. In this paper, we compared the proposed method with the bilateral filter and k-nearest neighbor widely used as a depth map upsampling method for performance comparison. Compared to the bilateral filter and the k-nearest neighbor, the proposed method reduced by about 6.4% and 8.6% in terms of MAE, and about 10.8% and 14.3% in terms of RMSE.

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

The comparison of clinical changes during maintenance phase after non-surgical or surgical therapy of chronic periodontitis (만성 치주염에서 비외과적 또는 외과적 치주치료 후 유지관리기 동안 임상적 변화의 비교)

  • Kim, Jee-Hyun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.69-84
    • /
    • 2006
  • Reports on the comparison of clinical effect between non-surgical and surgical therapy, and the change of the clinical parameters during maintenance phase have been rarely presented in Korea. This study was to observe the clinical changes during maintenance phase of 6 months in patients with chronic periodontitis treated by non-surgical or surgical therapy in Department of Periodontics, Chonnam National University Hospital. Among the systemically healthy and non-smoking patients with moderate to severe chronic periodontitis, twenty eight patients (mean age: 47.5 years) treated by non-surgical therapy (scaling and root planning) and nineteen patients (mean age: 47.3 years) treated by surgical therapy (flap surgery) were included in this study. The periodontal supportive therapy including recall check and oral hygiene reinforcement was started as maintenance phase since 1 month of healing after treatment. Probing depth, gingival recession. clinical attachment level and tooth mobility were recorded at initial, baseline and 1, 2, 3 and 6 month of maintenance phase. The clinical parameters were compared between the non-surgical and surgical therapies using Student t-test and repeated measure ANOVA by initial probing depth and surfaces. Surgical therapy resulted in greater change in clinical parameters than non-surgical therapy. During the maintenance phase of 6 months, the clinical effects after treatment had been changed in different pattern according to initial probing depth and tooth surface. During maintenance phase, probing depth increased more and gingival recession increased less after surgical therapy, compared to non-surgical therapy. The sites of initial probing depth less than 3 mm lost more clinical attachment level, and the sites of initial probing depth more than 7 mm gained clinical attachment level during maintenance phase after non-surgical therapy, compared to surgical therapy. Non-surgical therapy resulted in greater reduction of tooth mobility than surgical therapy during maintenance phase. These results indicate that the clinical effects of non-surgical or surgical therapy may be different and may change during the maintenance phase.

Depth Up-Sampling via Pixel-Classifying and Joint Bilateral Filtering

  • Ren, Yannan;Liu, Ju;Yuan, Hui;Xiao, Yifan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3217-3238
    • /
    • 2018
  • In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

Improving Detection Range for Short Baseline Stereo Cameras Using Convolutional Neural Networks and Keypoint Matching (컨볼루션 뉴럴 네트워크와 키포인트 매칭을 이용한 짧은 베이스라인 스테레오 카메라의 거리 센싱 능력 향상)

  • Byungjae Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.98-104
    • /
    • 2024
  • This study proposes a method to overcome the limited detection range of short-baseline stereo cameras (SBSCs). The proposed method includes two steps: (1) predicting an unscaled initial depth using monocular depth estimation (MDE) and (2) adjusting the unscaled initial depth by a scale factor. The scale factor is computed by triangulating the sparse visual keypoints extracted from the left and right images of the SBSC. The proposed method allows the use of any pre-trained MDE model without the need for additional training or data collection, making it efficient even when considering the computational constraints of small platforms. Using an open dataset, the performance of the proposed method was demonstrated by comparing it with other conventional stereo-based depth estimation methods.

A Study of Natural Air Drying of Rough Rice Leading to Optimization -Part II - Optimum Grain Depth and Least Cost System- (시물레이숀에 의한 상온통풍건조방법(常温通風乾燥方法)의 적정화(適正化)에 관(關)한 연구 -Part II : 최적퇴적(最適堆積)깊이와 최소건조비용(最少乾燥費用))

  • Chung, Chang Joo;Koh, Hak Kyun;Noh, Sang Ha;Han, Yong Jo
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-52
    • /
    • 1982
  • This study was intended to develop a cost function for the natural air in-bin drying: system which could lead to an optimization of the drying system cost. Based on the cost function developed, a series of simulated drying tests were conducted with 10-year weather data (1970~1979) for 7 different regions by applying an appropriate levels of system factors. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. An optimization procedure to find the least cost system was developed as follows: First, the worst year of the past decade was determined in consideration of the dryiang time and maximum dry matter loss. Second, the minimum airflow rate for a fixed bin diameter and grain depth was determined. Third, the optimum grain depth was found for the minimum airflow rate with different initial moisture contents and bin diameters. The results obtained in this study are summarized as follows: 1. The optimization procedure developed in this study was able to reduce the time and efforts significantly. 2. Optimum values of drying parameters including airflow rate, grain depth, and fan size were determined for different initial moisture contents and bin diameters in each region. The results are shown in Tables 3 to 9. 3. Optimum grain depths decreased as the initial moisture content and airflow rate increased. 4. Drying time for the least cost system should be reduced with higher initial moisture content and lower drying potential to prevent grain spoilage. 5. The fixed cost was 65 to 75 percent of the total system cost and the variable cost was 25 to 35 percent. To reduce the fixed cost it is desirable to use a drying bin 2 or 3 times a year.

  • PDF

Estimating Runoff Curve Numbers for Paddy Fields (논의 유출곡선번호 추정)

  • Im, Sang-Jun;Park, Seung-U
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.379-387
    • /
    • 1997
  • This study involves field monitoring of hydrlolgic characteristics of paddy fields under common irrigation practice, statistical analysis of maximum retention storage, determination of CNs for antecedent moisture conditions. Curve numbers were estimated from observed rainfall-runoff relationship of two years data. The estimated CN for AMC-II was 78, and the CNs for AMC-I and II were 63 and 88, respectively. A water balance model was used to find the effect of ridge height changes and initial ponding depth in paddy fields on runoff. The probability distribution of initial ponding depth was also investigated. The initial ponding depth follows normal probability distribution. Initial ponding depth corresponding 10%, 50%, and 90% probability were considered to be equivalent to AMC-I, AMC-II, and AMC-III, respectively. Long-term runoff data from paddy fields were simulated by a water balance model using recorded climate data, ridge height and estimated initial ponding depth derived from probability distribution. The estimated CNs using simulated runoff were 70, 79, and 89 for CN-I, CN-II, and CN-III, respectively.

  • PDF