• Title/Summary/Keyword: initial debris distribution

Search Result 6, Processing Time 0.018 seconds

Analysis of Initial Mass Distribution and Facility Shape to Determine Structural Alternative for Hazardous Zone Vulnerable to Debris Flow Disaster (토사재해 위험지역의 구조적 대안 설정을 위한 사태물질 초기 질량분포 및 방어시설물 형상의 영향 분석)

  • Seong, Joo-Hyun;Oh, Seung Myeong;Jung, Younghun;Byun, Yoseph;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • A 2-D hydrodynamic model for predicting the movement of debris flow was developed. The developed model was validated against a dam break flow problem conducted in EU CADAM project, and the performance of the model was shown to be satisfactory. In order to suggest structural alternative for hazardous zone vulnerable to debris flow disaster, two types of initial mass distribution and two shapes of defensive structure were considered. It was found that 1) the collapse of debris mass initiated with square pyramid shape induced more damage compared with that of cubic shape; and 2) a defensive structure with semi-circular shape was vulnerable to debris flow disaster in terms of debris control or primary defense compared with that of rectangular-shaped structure.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Inflow Characteristics of Debris Flow and Risk Assessment for Different Shapes of Defensive Structure (방어구조물 형상에 따른 토석류의 유입특성과 위험도 평가)

  • Oh, Seung Myeong;Song, Chang Geun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • This study analyzed the inflow characteristics of debris flow according to shape of defensive structure and computed risk index. In order to simulate debris flow, two shapes of defensive structure were considered. Initial mass distribution was set with a rectangular shape and defensive structures were set semi-circular shape and rectangular shape, respectively. It was found that a defensive structure with semicircular shape was more vulnerable to debris impact compared with rectangular shape because the flow mass became concentrated in quadrant part of the inner circle. If the velocity of the debris flow was less than 1 m/s, the risk assessment by FII (Flood Intensity Index) was much appropriate. However, when the movement of debris runout was faster than 1 m/s, the risk index of FHR (Flood Hazard Rating) provided improved classification due to its subdivided hazardous range.

Sedimentary Characters of the Core Sediments and Their Stratigraphy Using $^{87}Sr/^{86}Sr$ Ratio in the Korea Plateau, East Sea (동해 한국대지 코어퇴적물의 특성과 $^{87}Sr/^{86}Sr$ 초기비를 이용한 퇴적시기 규명)

  • Kim, Jin-Kyoung;Woo, Kyung-Sik;Yoon, Seok-Hoon;Suk, Bong-Chool
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.328-336
    • /
    • 2007
  • A piston core (587 cm long) was recovered from the upper slope of a seamount in the Korea Plateau. Three episodes of sedimentation were identified based on sedimentary facies, grain size distribution, carbonate constituents and initial $^{87}Sr/^{86}Sr$ ratio of carbonates. The lower part of the core, Unit I-a (core depth $465{\sim}587cm$) is composed of shallow marine carbonate sediments the deposited by storm surges, and is about $13{\sim}15Ma$ (Middle Miocene) based on $^{87}Sr/^{86}Sr$ initial ratio. This suggests that the depositional environment was relatively shallow enough to be influenced by storm activities. Unit I-b (core depth $431{\sim}465cm$) is mostly composed of turbidites, and Sr isotope ages of bivalves and planktonic formaminifera are about $11{\sim}14\;and\;6{\sim}13Ma$, respectively. This indicates that the Korea Plateau maintained shallow water condition until 11 Ma, and began to subside since then. However, planktonic foraminifera were deposited after 11 Ma and redeposited as turbidites as a mixture of planktonic foraminifera and older shallow marine carbonates about 6 Ma ago. Unit II (core depth $0{\sim}431cm$) is composed of pelagic sediments, and the Sr isotope age is younger than 1 Ma, thus the time gap is about 5 Ma at the unconformity. About 1 Ma ago, the Korea Plateau subsided down to a water depth of about 600 m. The sampling locality was intermittently influenced by debris flows and/or turbidity currents along the slope, resulting the deposition of re-transported coarse shallow marine and volcaniclastic sediments.