• Title/Summary/Keyword: initial concrete temperature

Search Result 167, Processing Time 0.023 seconds

An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age (모르터 압축강도 특성에 영향을 미치는 고온이력에 관한 실험적 연구)

  • Kim Young Joo;Gong Min Ho;Song In Myung;Yang Dong Il;Paik Min Su;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.703-706
    • /
    • 2004
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : II. Stress Distribution (불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : II. 응력 분포)

  • Lee, Dong Hoon;Kim, Ki Hyun;Jang, Seung Yup;Zi, Goangseup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.637-648
    • /
    • 2017
  • In this paper, the effects of initial built-in deformation and temperature deformation on the stress distribution of discontinuous precast concrete track slab under train load were examined. According to the results, when train load is put on a precast concrete slab with initial built-in deformation and deformation due to temperature gradient, the maximum tensile stresses develop at the upper side of slab in the slab center, edge center and corner of shear pocket; the stress distribution is different from that of the case under train load only. Therefore, to accurately predict the actual weak points and failure modes, one should calculate the stress under train load considering the initial built-in and temperature deformation of the slab.

Temperature Crack Control about Sidewall of LNG in Inchon (인천 LNG지하탱크 Sidewall의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Choi, Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.329-332
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like sidewall of LNG in Inchonl.

  • PDF

Temperature Crack Contol in Subway Box Structures (지하철 박스 구조물에서의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.293-298
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like the subway structure in Seoul.

  • PDF

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

Characteristic of Temperature History of Slab concrete by the Change of Insulation Curing Material and Difference of Heated cable Power Capacity. (단열양생재 변화 및 열선 전력용량 차이에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.334-336
    • /
    • 2013
  • In this study, the temperature history was evaluated for the improved bubble sheets combining hot wires and PE films, which were developed under the extreme environmental condition of -10℃ and applied on the top surface of slab to prevent initial damage by freezing. Results can be summarized as follows. If improved bubble sheets combining hot wires with different capacity on double and quadruple bubble sheets are used, the temperature history for all materials decreased to 2~3℃ below zero but all test materials except Type 1 secured the accumulative temperature of 45° D·D at 7 days of material age, required for the prevention of initial freezing damage. This indicates the bubble sheets can prevent the initial damage by freezing.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement (콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구)

  • Yoon, Young-Mi;Suh, Young-Chan;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2008
  • Quality control of the concrete pavement in the early stage of curing is very important because it has a conclusive effect on its life span. Therefore, examining and analyzing the initial behavior of concrete pavement must precede an alternative to control its initial behavior. There are largely two influential factors for the initial behavior of concrete pavement. One is the drying shrinkage, and the other is the heat generated by hydration and thermal change inside the pavement depending on the change in the atmospheric temperature. Thus, the coefficient of thermal expansion and drying shrinkage can be regarded as very important influential factors for the initial behavior of the concrete. It has been a general practice up until now to measure the coefficient of thermal expansion from completely cured concrete. This practice has an inherent limitation in that it does not give us the coefficient of thermal expansion at the initial stage of curing. Additionally, it has been difficult to obtain the measurement of drying shrinkage due to the time constraint. This research examined and analyzed the early drying shrinkage of the concrete and measurements of the thermal expansion coefficients to formulate a plan to control its initial behavior. Additionally, data values for the variables of influence were collected to develop a prediction model for the initial behavior of the concrete pavement and the verification of the proposed model. In this research, thermal expansion coefficients of the concrete in the initial stage of curing ranged between $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ Furthermore, the effects of the size and depth of the concrete on the drying shrinkage were analyzed and confirmed.

  • PDF

Development of a computer aided program for slipforming operations incorporating maturity approach

  • Hossain, K.M.A.;Anagnostopoulos, C.;Lachemi, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.177-195
    • /
    • 2006
  • Slipforming is a construction method in which the forms move continuously during the placement of concrete. This paper presents the development of a computer aided program designated as "CADSLIPFORM" for slipforming operations. The program incorporates maturity methods for the prediction of initial setting times of slipform concrete layers using laboratory data (time-temperature histories and setting times of concrete mixtures at different temperatures) and generates slipform mock-up times. The performance of CADSLIPFORM is validated by comparing simulated mock-up times with those estimated in the field through conventional hard front by rod (R) method. Moreover, the program versatility is demonstrated by illustrating mock-up simulations for different cases with variable slipform parameters such as: number and thickness of concrete layers, concrete temperature (simulating variable setting times) and slipform speed. The program also incorporates the choice of Freiesleben Hansen & Pederson (FHP) and Carino & Tank (CT) maturity functions. CADSLIPFORM can assist user to develop reliable schedule of slipforming operation suitable for a specific project by optimizing various slipform parameters.

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.