• Title/Summary/Keyword: inhibitor kappa B

Search Result 300, Processing Time 0.032 seconds

Identification of a Variant Form of Cellular Inhibitor of Apoptosis Protein (c-IAP2) That Contains a Disrupted Ring Domain

  • Park, Sun-Mi;Kim, Ji-Su;Park, Ji-Hyun;Kang, Seung-Goo;Lee, Tae Ho
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • Among the members of the inhibitor of apoptosis (IAP) protein family, only Livin and survivin have been reported to have variant forms. We have found a variant form of c-IAP2 through the interaction with the X protein of HBV using the yeast two-hybrid system. In contrast to the wild-type c-IAP2, the variant form has two stretches of sequence in the RING domain that are repeated in the C-terminus that would disrupt the RING domain. We demonstrate that the variant form has an inhibitory effect on TNF-mediated $NF-{\kappa}B$ activation unlike the wild-type c-IAP2, which increases TNFmediated $NF-{\kappa}B$ activation. These results suggest that this variant form has different activities from the wild-type and the RING domain may be involved in the regulation of TNF-induced $NF-{\kappa}B$ activation.

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

Inhibition of NF-IL6 Activity by Manassantin B, a Dilignan Isolated from Saururus chinensis, in Phorbol Myristate Acetate-stimulated U937 Promonocytic Cells

  • Son, Kyung-No;Song, In-Sung;Shin, Yong-Hyun;Pai, Tong-Kun;Chung, Dae-Kyun;Baek, Nam-In;Lee, Jung Joon;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.105-111
    • /
    • 2005
  • Mannasantin B, a dilignan structurally related to manssantin A, is an inhibitor of NF-${\kappa}B$ transactivation. In the present study, we found that it inhibited PMA-induced expression of IL-$1{\beta}$, IL-$1{\beta}$ mRNA, and IL-$1{\beta}$ promoter activity in U937 cells with $IC_{50}$ values of about 50 nM. It also inhibited NF-IL6- and NF-${\kappa}B$-induced activation of IL-$1{\beta}$, with $IC_{50}$ values of 78 nM and $1.6{\mu}M$, respectively, revealing a potent inhibitory effect on NF-IL6. Electrophoretic mobility shift assays showed that manassantin B had an inhibitory effect on DNA binding by NF-IL6, but not by NF-${\kappa}B$. Further analysis revealed that transactivation by NF-IL6 was also inhibited. Our results indicate that manassantin B suppresses expression of IL-$1{\beta}$ in promonocytic cells by inhibiting not only NF-${\kappa}B$ but also NF-IL6 activity. Furthermore, our observations suggest that manassantin B may be clinically useful as a potent inhibitor of NF-IL6 activity.

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.

Inhibition of IκB Kinase β (IKKβ) and Anti-diabetic Effect of SA51

  • Bhattarai, Bharat Raj;Kafle, Bhooshan;Hwang, Ji-Sun;Han, Inn-Oc;Cho, Hyeongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2487-2490
    • /
    • 2013
  • SA51, a medium potency inhibitor of protein tyrosine phosphatase 1B (PTP1B), was identified to be a potent inhibitor of $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Consistent with this, SA51 prevented lipopolysaccharide (LPS)-induced breakdown of $I{\kappa}B{\alpha}$ in macrophages. The effects of SA51 in mice were compared with those of structurally related compounds, SA18 and SA32, which were previously reported as inhibitors of both enzymes - less potent against $IKK{\beta}$ but more potent against PTP1B compared to SA51. SA51 improved glucose tolerance and lipid parameters in mice, consistent with the results reported for $IKK{\beta}^{+/-}$ mice. In contrast, SA18 and SA32 showed anti-obesity effects without anti-diabetic effects. Collectively, the effects of SA51 could be due largely to the inhibition of $IKK{\beta}$, whereas SA18 and SA32 may be more likely to inhibit PTP1B, consistent with their relative in vitro inhibitory effects.

Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-${\kappa}B$ Pathway

  • Kim, Eun Jeong;Lee, Min Young;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-${\kappa}B$), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-${\kappa}B$ inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-${\kappa}B$ activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-${\kappa}B$ in mediating inflammatory responses in macrophages.