• Title/Summary/Keyword: inhibition of algal growth

Search Result 40, Processing Time 0.024 seconds

Evaluation of Toxicity for Commercial Red Mud Pellets Using Pseudokirchneriella subcapitata and Daphnia magna

  • Lee, Saeromi;Ahn, Chang Hyuk;Park, Jae Roh;Lee, Sooji;Lee, Inju;Joo, Jin Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.345-350
    • /
    • 2015
  • The toxicity of red mud (RM) pellets for water purification was evaluated using Pseudokirchneriella subcapitata and Daphnia magna in a lab-scale experiment. According to the algal growth inhibition test, both specific growth rates and relative growth rates of P. subcapitata decreased, and the growth inhibition rates increased ($R^2=0.97$, p<0.001) as the concentration of RM pellets in the aqueous solution increased (>1.6 g/L). Also, based on the acute toxicity evaluation test on D. magna, toxic unit (TU) values ranged between 0.00 and 2.83, and increased with an increase in the concentration of RM pellets in the aqueous solution. A correlation analysis indicated that the pH of RM pellets was statistically correlated with TU values ($R^2=0.77$, p=0.02). The environmental implication from this study is that the concentration of RM pellets in an aqueous solution needs to be lower than 4.4 g/L to keep the maximum permissible TU value less than 1.0.

Isolation and Characterization of Alga-Lytic Bacterium HY0210-AK1 and Its Degradability of Anabaena cylindrica (남조류 분해세균 HY0210-AK1의 분리와 특성 및 Anabaena cylindrica 분해 활성)

  • 장은희;김정동;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • To isolate alga-lytic bacteria, a number of samples were collected from Lake of Sukchon and Pal'tang reservoir where cyanobacteria blooming occurred. HY0210-AK1, which exhibited high alga-lytic activity, was isolated using Anabaena cylindrica lawn. The morphological and biochemical characteristics of the isolate HY0210-AK1 were very similar to that of the genus Rhizobium. Taxonomic identification including 16S rDNA base sequencing and phylogenetic analysis indicated that the isolate Hy0210-AK1 had a 99.1% homology in its 16S rDNA babe sequence with Sphingobium herbicidovorans. A. cylindrica NIES-19 was susceptible to the alga-lytic bacterial attack. The growth-inhibiting offset of the bacterium was not different on A. cylindrica NIES-19 when Sphingobium herbicidovorans HY0210-AK1 was in the lag, exponential, and stationary growth phase, although the alga-Iytic effect of S. herbici-dovorans HY0210-AK1 that in stationary growth phase was somewhat pronounced at the first time of inoculation. When S. herbicidovorans HY0210-AK1 was inoculated was inoculated with $1\times 10^{8}$ CFU $ml^{-1}$ together with A cylindrica NIES-19, the bacterium proliferated and caused algal lysis. A. cylindrica NIES-19 died when S. herbicidovorans HY0210 AKl was added to the algal culture but not when duly the filtrates from the bacterial culture was added. This suggests that extracellular substances are not responsible for inhibition of A. cylindrica NIES-19 and that algal Iysis largely attributed to direct interaction between S. herbicidovorans HY0210-AK1 and A. cylindrica NIES-19. The alga-lytic bacterium HY0210-AK1 caused cell lysis and death of three strain of Micro-cystis aeruginosa, but revealed no alga-Iytic effects on the Stephanodiscus hantzschii.

Enclosure Experiments on the Effects of Various Plants on Algae (경안천 현장실험조에서 식물체를 이용한 조류 증식억제)

  • Lim, Byung-Jin;Jheong, Weon-Hwa;Jun, Sun-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.304-310
    • /
    • 2000
  • Enclosure experiments to reduce the growth of Cyanophyceae were carried out using plants in Kyongan stream. Wet plants put into the enclosure at a rate of 2.5 g wet wt/l and at that time, the average concentration of chlorophyll a was ranged from 30 to $50\;{\mu}g/l$. The dominant species was Microcystis aeruginosa. Ginkgo, big cone pine and pine needles significantly inhibited the growth of Microcystis from the early days to the stages of log-Phase. Waterchestnut was the most inhibitory to the growth of Microcystis. Pine needles inhibited in 85% of the algal growth: ginkgo in 80%; big cone pine in 75%; waterchestnut in 78%; wildrice in 59%; and iris in 30%. At the treatment with 0.25 g dried plants/l, algae was declined at a rate of 90% by waterchestnut: 53% by pine needles. Phenolic compounds were purifled from decomposing big cone pine and waterchestnut.

  • PDF

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae;Nam, Ji-Hyun;Kim, Dong-Min;Song, Chulwoo;Jahng, Deokjin
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.

Aquatic Toxicity Assessment of Phosphate Compounds

  • Kim, Eunju;Yoo, Sunkyoung;Ro, Hee-Young;Han, Hye-Jin;Baek, Yong-Wook;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, Pilje;Choi, Kyunghee
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.2.1-2.7
    • /
    • 2013
  • Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration ($LC_{50}$) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration ($EC_{50}$) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr $EC_{50}$ was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, $L(E)C_{50}$ was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

Growth Inhibition of Toxic Cyanobacterium Microcystis aeruginosa, Using Rice Hull Methanolextracts (왕겨 메탄을 추출물을 이용한 독성 남조 Microcystis aeruginosa의 성장 억제)

  • Park, Myung-Hwan;Chung, Ill-Min;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.99-106
    • /
    • 2008
  • We examined the effects of crude and eight pure material (${\beta}$-sitosterol, ${\beta}$-sitosterol-${\beta}$-D-glucoside, 1-tetratriacontanol, hentriacontane, orizaterpenoid, stigmas-5-en-$3{\alpha}$ 26-diacetate, stearic acid, myristic acid), extracted from rice hull, on growth inhibition of toxic cyanobacterium, Microcystis aeruginosa NIER 10010. Strains of M. aeruginosa and Daphnia magna, obtained from the NIER (Korea) and BBE (Germany), were cultured in the CB medium with hard water. For all four treatment concentrations 0, 10, 100 and $1,000{\mu}g\;L^{-1}$) of the crude extract, the cell number of M. aeruginosa was reduced by $59{\sim}73%$ during the 7-day test period. Among eight kinds of pure extracts, ${\beta}$-sitosterol-${\beta}$-D-glucoside, hentriacontane and orizaterpenoid $(1,000{\mu}g\;L^{-1})$ exhibited relatively higher growth inhibition compared with other pure extracts. The mixture of three pure extracts (${\beta}$-sitosterol-${\beta}$-D-glucoside, hentriacontane and orizaterpenoid) showed the highest growth inhibition at $1,000{\mu}g\;L^{-1}$. Therefore, the synergistic effect was significantly highlighted by a mixture of the three pure extracts (p<0.05). Under the condition of $1,000{\mu}g\;L^{-1}$ in the crude extracts, D. magna exhibited survival rate by >85% for 96 hours. In conclusion, the growth inhibition of M. aeruginosa was probably attributed to the synergistic effect of various compounds extracted from the rice hull.

Effects of Nonylphenol on the Population Growth of Algae, Heterotrophic Nanoflagellate and Zooplankton (내분비장애물질 Nonylphenol이 미세조류, 종속영양편모충, 동물플랑크톤의 개체군 성장에 미치는 영향)

  • Lee, Ju-Han;Lee, Hae-Ok;Kim, Baik-Ho;Katano, Toshiya;Hwang, Su-Ok;Kim, Dae-Hyun;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.379-386
    • /
    • 2007
  • Nonylphenol (NP) has been well known as a major substance of surfactant and/or estrogenic environmental hormone. We tested toxic effects of nonylphenol on the population growth and development of aquatic organism such as algae (Microcystis aeruginosa), heterotrophic nanoflagellate (Diphylleia rotans), micro- (Brachionus calyciflorus) and macro-zooplankton (Daphnia magna) among eutrophic water food-web constituents. Dosage of NP treatment were 4 to 5 grades, according to each organism's tolerance based on pre-experiments; algae (0.01, 0.05, 0.10, 1.00 mg $L^{-1}$) Diphylleia rotans (0.5, 1,2. 5,6, 10 ${\mu}g\;L^{-1})$, Brachionus calyciflorus (0.1, 0.5, 1, 2.5, 5 ${\mu}g\;L^{-1}$), and Daphnia magna (0.5, 1, 5, 10, 50 ${\mu}g\;L^{-1}$), respectively. Toxic effects were measured by the changes of biomass of each organism after NP treatment. All experiments were triplication. As suggested, the higher concentration of NP treatment, the stronger inhibited the population growth of all organisms tested. In view of toxicity, a variety of concentration of NP showed a significant growth inhibition to organism; algae to 0.05 $mg\;L^{-1}$, D. rotans and B. calyciflorus to 1.0 ${\mu}g\;L^{-1}$, and D. magna to 5.0 ${\mu}g\;L^{-1}$, respectively. The $EC_{50}$ of each organism to the nonylphenol are as follows; 3. calyciflorus (2.49 ${\mu}g\;L^{-1}$), D. rotans (3.49 ${\mu}g\;L^{-1}$), D. magna (7.61 ${\mu}g\;L^{-1})$, and M. aeruginosa (47 ${\mu}g\;L^{-1})$. NP toxic effects on the development of zooplankton like egg production showed some differences in treatment concentration between Brachionus calyciflorus ${0.1{\sim}1NP{\mu}g\;L^{-1})$ and Daphnia magna $(0.5{\sim}5NP\;{\mu}g\;L^{-1})$. These results suggest that a strong growth inhibition of predator or grazer by the nonylphenol can stimulate the algal growth, or can play important role in evoking the nuisance algal bloom in eutrophic water with enough nutrients.

Inhibition of Microcystis aeruginosa by the Extracellular Substances from an Aeromonas sp.

  • Liu, Yu-Mei;Chen, Ming-Jun;Wang, Meng-Hui;Jia, Rui-Bao;Li, Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1304-1307
    • /
    • 2013
  • Growth of Microcystis aeruginosa could be inhibited significantly within 24 h by the extracellular substances prepared from Aeromonas sp. strain FM. During the treatment, the concentration of extracellular soluble carbohydrates increased significantly in algal culture. Morphological and ultrastructural changes in M. aeruginosa cells, including breakage of the cell surface, secretion of mucilage, and intracellular disorganization of thylakoids, were observed. HPLC-MS analysis showed that the extracellular substances of Aeromonas sp. strain FM were a mixture of free amino acids, tripeptides, and clavulanate. Among these, the algaelysis effects of lysine and clavulanate were confirmed.

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa (남세균 제어를 위한 동물플랑크톤(Daphnia magna)과 패류(Unio douglasiae)의 단독 및 혼합적용)

  • Kim, Nan-Young;Park, Myung-Hwan;Hwang, Su-Ok;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Single - and combined effects of a domestic freshwater bivalve Unio douglasiae (7.6~8.6 cm in shell length) and zooplankton Daphnia magna (1~2 mm in body size) were examined to understand whether they inhibit the growth of harmful cyanobacterial bloom (i.e. Microcystis aeruginosa) in a eutrophic lake. The experiments were triplicated with twelve glass aquaria (40 L in volume); three aquaria without mussel and zooplankton, served as a control, three zooplankton aquaria (Z, density=40 indiv. $L^{-1}$), three mussel aquaria (M, density=0.5 indiv. $L^{-1}$), and three mussel plus zooplankton aquarium (ZM, density=40 indiv.Z $L^{-1}$ plus 0.5 indiv.M/L), respectively. Algal growth inhibition (%) calculated as a difference in the concentration of chlorophyll-a (Chl-a) before and after treatment. Chl-a in all aquaria decreased with the time, while a greatest algal inhibition was seen in the ZM aquaria. After 24 hrs of incubation, Chl-a concentration at the mid-depth (ca. 15 cm) in ZM aquaria reduced by 90.8% of the control, while 63.2% and 79.8% in Z and M aquaria, respectively. Interestingly, during the same period, the surface Chl-a was diminished by 51.9% and 65.4% relative to the control in Z and ZM aquaria, while 27.4% of initial concentration decreased in M aquarium, respectively. These results suggest that 1) this domestic freshwater filter-feeding bivalve plays a significant role in the control of cyanobacterial bloom (M. aeruginosa), and 2) the combination with zooplankton and mussel has a synergistic effect to diminish them, compared to the single treatment of zooplankton and mussel.