• Title/Summary/Keyword: inhibition kinetics

Search Result 154, Processing Time 0.023 seconds

Application of hybrid material, modified sericite and pine needle extract, for blue-green algae removal in the lake

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.364-373
    • /
    • 2018
  • The present study assessed the efficient removal of nutrients and Chlorophyll-a (Chl-a) by using methyl esterified sericite (MES) and pine needle extracts (PNE), a low cost and abundant green hybrid material from nature. For this purpose, the optimal conditions were investigated, such as the pH, temperature, MES and PNE ratio, and MES-PNE dose. In addition, a Microcystis aeruginosa control using MES-PNE was also analyzed with various inhibition models. The removal of the nutrient and Chl-a onto MES-PNE was optimized for over 95% removal as follows: 2-2.5 for the MES-PNE ratio, 7-8 pH and a $22-25^{\circ}C$ temperature. In this respect, approximately 1.52-2.20 g/L of MES-PNE was required to remove each 1 g of dry weight/L of Chl-a. Total phosphorus (TP) has a greater influence on the increase in Chl-a than total nitrogen (TN) according to the correlation between TN, TP and Chl-a. Moreover, the Luong model was the best model for fitting the biodegradation kinetics data from Chl-a on MES-PNE from lake water. The novel hybrid material MES-PNE was very effective at removing TN, TP and Chl-a from the lake and can be applied in the field.

Characteristics and Inhibition of Polyphenol Oxidase from Fuji Apples (후지 사과 Polyphenol Oxidase의 특성 및 활성억제)

  • Choi, Eon-Ho;Jung, Dong-Sun;Cho, Nam-Sook;Shim, Young-Hyun
    • Applied Biological Chemistry
    • /
    • v.30 no.3
    • /
    • pp.278-284
    • /
    • 1987
  • As a basic research for inhibition of enzymatic browning of apples during dehydration or processing, polyphenol oxidase was extracted from Fuji apples to investigate heat inactivation, chemical inhibition and other properties. Polyphenol oxidase showed the highest activity at $20^{\circ}C$ and pH 5.5 with catechol as substrate, and the Michaelis constant of 0.14 M under the same condition of substrate and pH. The thermal inactivation followed pseudo first-order kinetics to have activation energy of 23.0 kcal/mol and z value of $19.7^{\circ}C$. As for substrate specificity the polyphenol oxidase showed high affinity toward the o-diphenolic compounds, particularly chlorogenic acid. Neither the m- and p-dihydroxy phenols nor monophenols were attacked. Browning by polyphenol oxidase was completely inhibited at the concentrations of 10mM for potassiummetasulfite and thiourea and 1mM for L-cysteine, ascorbic acid and sodium diethyldithiocarbamate.

  • PDF

Blockade of Kv1.5 channels by the antidepressant drug sertraline

  • Lee, Hyang Mi;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.193-200
    • /
    • 2016
  • Sertraline, a selective serotonin reuptake inhibitor (SSRI), has been reported to lead to cardiac toxicity even at therapeutic doses including sudden cardiac death and ventricular arrhythmia. And in a SSRI-independent manner, sertraline has been known to inhibit various voltage-dependent channels, which play an important role in regulation of cardiovascular system. In the present study, we investigated the action of sertraline on Kv1.5, which is one of cardiac ion channels. The effect of sertraline on the cloned neuronal rat Kv1.5 channels stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. Sertraline reduced Kv1.5 whole-cell currents in a reversible concentration-dependent manner, with an $IC_{50}$ value and a Hill coefficient of $0.71{\mu}M$ and 1.29, respectively. Sertraline accelerated the decay rate of inactivation of Kv1.5 currents without modifying the kinetics of current activation. The inhibition increased steeply between -20 and 0 mV, which corresponded with the voltage range for channel opening. In the voltage range positive to +10 mV, inhibition displayed a weak voltage dependence, consistent with an electrical distance ${\delta}$ of 0.16. Sertraline slowed the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of sertraline, were superimposed. Inhibition of Kv1.5 by sertraline was use-dependent. The present results suggest that sertraline acts on Kv1.5 currents as an open-channel blocker.

Blockade of Kv1.5 by paroxetine, an antidepressant drug

  • Lee, Hyang Mi;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • Paroxetine, a selective serotonin reuptake inhibitor (SSRI), has been reported to have an effect on several ion channels including human ether-a-go-go-related gene in a SSRI-independent manner. These results suggest that paroxetine may cause side effects on cardiac system. In this study, we investigated the effect of paroxetine on Kv1.5, which is one of cardiac ion channels. The action of paroxetine on the cloned neuronal rat Kv1.5 channels stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. Paroxetine reduced Kv1.5 whole-cell currents in a reversible concentration-dependent manner, with an $IC_{50}$ value and a Hill coefficient of $4.11{\mu}M$ and 0.98, respectively. Paroxetine accelerated the decay rate of inactivation of Kv1.5 currents without modifying the kinetics of current activation. The inhibition increased steeply between -30 and 0 mV, which corresponded with the voltage range for channel opening. In the voltage range positive to 0 mV, inhibition displayed a weak voltage dependence, consistent with an electrical distance ${\delta}$ of 0.32. The binding ($k_{+1}$) and unbinding ($k_{-1}$) rate constants for paroxetine-induced block of Kv1.5 were $4.9{\mu}M^{-1}s^{-1}$ and $16.1s^{-1}$, respectively. The theoretical $K_D$ value derived by $k_{-1}/k_{+1}$ yielded $3.3{\mu}M$. Paroxetine slowed the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of paroxetine, were superimposed. Inhibition of Kv1.5 by paroxetine was use-dependent. The present results suggest that paroxetine acts on Kv1.5 currents as an open-channel blocker.

In vitro Acetolactate Synthase Inhibition of LGC-40863 in Rice and Barnyardgrass (시규제초제 LGC-40863의 벼와 피에 대한 Acetolactate synthase 저해 활성)

  • Bae, Y.T.;Lee, J.H.;Koo, S.J.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • LGC-40863(proposed common name ; pyribenzoxim), (benzophenone O-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime) is a new rice herbicide being developed by LG Chemical Ltd. The herbicide is highly selective between rice(Oryza sativa L.) and weeds including barnyardgrass (Echinochloa crus-galli(L.) P. Beauv.), and assumed to inhibit acetolactate synthase(ALS ; EC 4.1.3.18) because other structurally related herbicides inhibit the enzyme. To know inhibitory activity and the mode of inhibition of LGC-40863, $I_{50}$(concentration inhibiting ALS activity by 50%) and inhibition kinetics were investigated using ALS extracted from rice and barnyardgrass. $I_{50}$ values of LGC-40863 were 14 and 16mM in rice and barnyardgrass, respectively. In contrast to imazapyr(2-[4,5-dihydro-4-mythyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-pyridine-carboxylic acid) which showed an uncompetitive inhibition pattern, LGC-40863 was a noncompetitive inhibitor to ALS with respect to pyruvate similar to chlorsulfuron(2-chloro-N-((4-methoxy-6-methyl-l,3,5-triazin-2-yl) aminocarbonyl)benz-enesulfonamide) in both plants.

  • PDF

Symbolic-numeric Estimation of Parameters in Biochemical Models by Quantifier Elimination

  • Orii, Shigeo;Anai, Hirokazu;Horimoto, Katsuhisa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.272-277
    • /
    • 2005
  • We introduce a new approach to optimize the parameters in biological kinetic models by quantifier elimination (QE), in combination with numerical simulation methods. The optimization method was applied to a model for the inhibition kinetics of HIV proteinase with ten parameters and nine variables, and attained the goodness of fit to 300 points of observed data with the same magnitude as that obtained by the previous optimization methods, remarkably by using only one or two points of data. Furthermore, the utilization of QE demonstrated the feasibility of the present method for elucidating the behavior of the parameters in the analyzed model. The present symbolic-numeric method is therefore a powerful approach to reveal the fundamental mechanisms of kinetic models, in addition to being a computational engine.

  • PDF

Kinetics for the Growth of Alcaligenes eutrophus and the Biosynthesis of Poly-${\beta}$-hydroxybutyrate (Alcaligenes eutrophus 균주의 성장과 Ploy-${\beta}$-hydroxybutyrate 생합성에 대한 속도론)

  • Lee, Yong-Woo;Yoo, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.186-192
    • /
    • 1991
  • It is very important to have a good kinetic model which considers the effects of both ammonium and glucose for the control and optimization of the poly-${\beta}$-hydroxybutyrate (PHB) fermentation. A kinetic model for the growth of Alcaligenes eutrophus and the biosynthesis of PHB under both ammonium and glucose limitation was proposed. Growth rate of residual biomass was expressed as a function of concentrations of residual biomass, glucose and ammonium having glucose inhibition. PHB production rate was expressed as a function of concentrations of residual biomass, glucose, ammonium and PHB content having ammonium and product inhibitions. Novel approaches were made to estimate the parameters in the model equations which considered two limiting substrates. Model parameters were evaluated by graphical and simplex methods. The proposed kinetic model fitted the data very well.

  • PDF

Tyrosinase Inhibitor from the Flowers of Impatiens balsamina

  • Lim, Young-Hee;Kim, In-Hwan;Seo, Jung-Ju;Kim, Jeong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1977-1983
    • /
    • 2006
  • Kaempferol was isolated and identified from the methanol extract of the flowers of Impatiens balsamina. Kaempferol showed inhibitory activity against mushroom tyrosinase with an $ID_{50}$ of 0.042 mM. Inhibition kinetics, as determined using a Lineweaver-Burk plot, showed kaempferol to be a competitive inhibitor of mushroom tyrosinase with a $K_i$ value of 0.011 mM. The lag phase of tyrosine hydroxylation catalyzed by mushroom tyrosinase clearly increased on increasing the concentration of kaempferol. In addition to its tyrosinase inhibiting activity, kaempferol strongly inhibited melanin production by Streptomyces bikiniensis, in a dose-dependent manner, without inhibiting cell growth. For comparative purposes, the tyrosinase inhibitory activity of kaempferol was also assayed versus quercetin, a positive standard.

Pethidine induced changes in ovarian follicular kinetics and biochemical parameters in albino rats

  • Patil, Somanath Reddy;Patil, Saraswati B;Malashetty, Vijaykumar B
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.300-305
    • /
    • 2006
  • Pethidine at the dose level of 0.5 mg and 0.75 mg/100 g body weight administered for 20 days to the cycling albino rats caused decrease in the ovarian weight and its protein content. The ovarian folliculogenesis in treated rats is hampered; as a result the follicles which are at the different stages of growth underwent regression. Therefore, the number of healthy follicles is reduced and atretic follicles increased. The elevated levels of ovarian cholesterol and decreased level of glycogen in the pethidine treated rats indicates the inhibition brought in steroidogenesis, which is dependent on pituitary gonadotrophins.

The Inhibitory Effect of New Hydroxamic Acid Derivatives on Melanogenesis

  • Baek, Heung-Soo;Rho, Ho-Sik;Yoo, Jae-Won;Ahn, Soo-Mi;Lee, Jin-Young;Lee, Jeong-A;Kim, Min-Kee;Kim, Duck-Hee;Chang, Ih-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.43-46
    • /
    • 2008
  • The aim of present study was to examine the inhibitory effects of hydroxamic acid derivatives on the melanogenesis. We found that hydroxamic acid moiety was important for anti-melanogenic activity. Compounds 1a and 1b strongly inhibited melanin synthesis via deactivation of tyrosinase. Hydroxamic acid has metal ion chelating ability which is similar to that kojic acid, however, anti-tyrosinase mechanism of compounds 1a and 1b was different from that of kojic acid. They showed noncompetitive inhibition kinetics