• Title/Summary/Keyword: inhibiting factor

Search Result 551, Processing Time 0.029 seconds

The Effects of Aqueous Extracts of Aconiti ciliare tuber on Functional Recovery after Sciatic Crushed Nerve Injury in Rats

  • Cho, Tae-Young;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • Objective : The aim of this study was to evaluate the effects of Aconiti ciliare tuber on the descending pain and the recovery of locomotor function that results from sciatic crushed nerve injury in rats. Method : In order to assess the effects of the aqueous extract of Aconiti ciliare tuber on the recovery rate of locomotor function, we investigated the walking track analysis, and for the effects on the pain control we investigated brain-derived neurotrophic factor (BDNF) and inducible nitric oxide synthase (iNOS) expression in the sciatic nerve and on the expressions of c-Fos in the ventrolateral periaqueductal gray (vlPAG) region resulting from the sciatic crushed nerve injury in rats. Result : Treatment with Aconiti ciliare tuber significantly enhanced the SFIvalue, enhanced BDNF expression, decreased iNOS expression, and suppressed c-Fos expression. The present results showed that Aconiti ciliare tuber facilitated functional recovery following sciatic crushed nerve injury in rats. The recovery mechanisms of SFI by Aconiti ciliare tuber might be ascribed to the increase of BDNF expression for nerve regeneration and reinnervation and to the suppression of iNOS expression for inhibiting nerve inflammation. Conclusion : In this process it has been shown that Aconiti ciliare tuber can be used for pain control and functional recovery from peripheral nerve injury.

  • PDF

Interference of Fisetin with Targets of the Nuclear Factor-κB Signal Transduction Pathway Activated by Epstein-Barr Virus Encoded Latent Membrane Protein 1

  • Li, Rong;Liang, Hong-Ying;Li, Ming-Yong;Lin, Chun-Yan;Shi, Meng-Jie;Zhang, Xiu-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9835-9839
    • /
    • 2014
  • Fisetin is an effective compound extracted from lacquer which has been used in the treatment of various diseases. Preliminary data indicate that it also exerts specific anti-cancer effects. However, the manner in which fisetin regulates cancer growth remains unknown. In this study, we elucidated interference of fisetin with targets of the nuclear factor ${\kappa}B$ signal transduction pathway activated by Epstein-Barr virus encoding latent membrane protein 1 (LMP1)in nasopharyngeal carcinoma (NPC) cells, Results showed that fisetin inhibited the survival rate of CNE-LMP1 cells and NF-${\kappa}B$ activation caused by LMP1. Fisetin also suppressed nuclear translocation of NF-${\kappa}B$ (p65) and $I{\kappa}B{\alpha}$ phosphorylation, while inhibiting CyclinD1, all key targets of the NF-${\kappa}B$ signal transduction pathway. It was suggested that interference effects of fisetin with signal transduction activated by LMP1 encoded by the Epstein-Barr virus may play an important role in its anticancer potential.

Repression of $PPAR{\gamma}$ Activity on Adipogenesis by $17{\beta}$-estradiol in Differentiated 3T3-L1 Cell

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In our previous report, we showed that $PPAR{\gamma}$ does not influence adipogenesis in females with functioning ovaries, indicating that $PPAR{\gamma}$ activity on adipogenesis is associated with sex-related factors. Among the sex-related factors, estrogen has been recognized as a major factor in inhibiting adiposgenesis in females. Thus, we hypothensized that $17{\beta}$-estradiol (E) inhibits 3T3-L1 cell adipogenesis by preventing $PPAR{\gamma}$ activity. E decreased triglyceirde accumulation in differentiated 3T3-L1 cells compared with control group. E also decreased the expression of $PPAR{\gamma}$ mRNA as well as $PPAR{\gamma}$ dependent adipocyte-specific genes, such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. In addition, E not only decreased luciferase reporter activity by $PPAR{\gamma}$, but also transfection of estrogen receptor $\alpha$ ($ER{\alpha}$) or $ER{\beta}$ led to decreases in $PPAR{\gamma}$ reporter gene activation. Moreover, E-activated ERs significantly decreased the luciferase reporter gene activation induced by $PPAR{\gamma}$ transfection, suggesting that estrogen-activated ERs inhibit $PPAR{\gamma}$-dependent transactivation. Accordingly, our results demonstrate that E inhibits the action of $PPAR{\gamma}$ on adipogenesis through E activated ER, providing evidence that lack of estrogen may potentiate $PPAR{\gamma}$ action on adipogenesis.

  • PDF

Synergistic Anti-tumor Effect of KLF4 and Curcumin in Human Gastric Carcinoma Cell Line

  • Ji, Jun;Wang, He-Shuang;Gao, Yan-Yan;Sang, Li-Min;Zhang, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7747-7752
    • /
    • 2014
  • Kr$\ddot{u}$ppel-like factor 4 is a transcription factor which plays an important role in development and progression of various carcinomas. Curcumin characterized by excellent anti-cancer properties is regarded as a serviceable natural compound used in carcinoma therapy. This study aimed at exploring the impact of KLF4 overexpression in cooperation with curcumin on the proliferation, apoptosis and invasion of human gastric carcinoma BGC-823 cells. Flow cytometry analysis, CCK-8 assays, transwell assays and Western blot results showed that KLF4 overexpression combined with curcumin had significant anti-proliferation, pro-apoptosis and anti-invasion effects on BGC-823 cells. We also found that KLF4 had synergistic effects with curcumin, better promoting apoptosis and inhibiting proliferation and invasion of gastric carcinona cells. These results indicate that KLF4 could be used as a potential therapeutic target; curcumin could act as an auxiliary and provide a promising therapeutic strategy in stomach cancer.

Gliotoxin from the marine fungus Aspergillus fumigatus induces apoptosis in HT1080 fibrosarcoma cells by downregulating NF-κB

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.9
    • /
    • pp.35.1-35.6
    • /
    • 2016
  • Gliotoxin has been recognized as an immunosuppressive agent for a long time. Recently, it was reported to have antitumor properties. However, the mechanisms by which it inhibits tumors remain unclear. Here, we showed that gliotoxin isolated from the marine fungus Aspergillus fumigatus inhibited proliferation and induced apoptosis in HT1080 human fibrosarcoma cells. Gliotoxin repressed phosphorylation-dependent degradation of $I{\kappa}B-{\alpha}$, an antagonist of nuclear factor kappa B ($NF-{\kappa}B$), which is a known tumor-promoting factor. This coincided with a decrease in nuclear import of $NF-{\kappa}B$, suggesting its signaling activity was impaired. Moreover, gliotoxin increased intracellular reactive oxygen species (ROS). Since ROS have been known to inhibit $NF-{\kappa}B$, this may also contribute to gliotoxin's antitumorigenic effects. These results suggest that gliotoxin suppressed the activation of $NF-{\kappa}B$ by inhibiting phosphorylation and degradation of $I{\kappa}B-{\alpha}$ and by increasing ROS, which resulted in apoptosis of HT1080 cells. Cumulatively, gliotoxin is a promising candidate antagonist of $NF-{\kappa}B$, and it should be investigated for its possible use as a selective inhibitor of human fibrosarcoma cells.

Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

  • Jiang, Yunyao;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-${\alpha}$, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-${\alpha}$ in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders.

Anti-inflammatory effects of porcine placenta in forced swimming tested fatigue mice and RAW264.7 cells

  • Nam, Sun-Young;Kang, Sang Woo;Kim, Jongbae;Lee, Won Kyung
    • CELLMED
    • /
    • v.7 no.4
    • /
    • pp.20.1-20.6
    • /
    • 2017
  • Inflammation has been linked to various diseases. Especially, fatigue is a frequent symptom in several inflammatory disorders. Therefore, blocking inflammatory process is effective in fatigue. We investigated whether Denmark porcine placenta (DPP) alleviates fatigue by inhibiting inflammatory reaction using forced swimming test (FST) animal model and RAW264.7 cells. In FST-induced fatigue animal model, the mice which received the DPP for 21 days showed decreases of interleukin $(IL)-1{\beta}$ and IL-6 serum levels. Furthermore, our data revealed that lipopolysaccharide (LPS)-induced $IL-1{\beta}$, IL-6, and tumor necrosis $factor-{\alpha}$ secretion were markedly inhibited by DPP in RAW264.7 cells without inducing cytotoxicity. LPS-enhanced nitric oxide secretion and inducible nitric oxide synthase expression were inhibited by DPP. The present study also figured out that these effects of DPP were mediated by blockade of caspase-1 and nuclear $factor-{\kappa}B$ activation. Taken together, our results indicated that DPP could be alleviating fatigue as candidate of anti-inflammatory agent.

Inhibitory Effect of Standardized Curcuma xanthorrhiza Supercritical Extract on LPS-Induced Periodontitis in Rats

  • Kook, Kyo Eun;Kim, Changhee;Kang, Wonku;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1614-1625
    • /
    • 2018
  • Periodontitis, which is a severe inflammatory disease caused by endotoxins secreted from oral pathogens, destructs gingival tissue and alveolar bone. Curcuma xanthorrhiza, commonly called Java turmeric, has been shown to possess anti-bacterial and anti-inflammatory activities. The present study evaluated the inhibitory effect of C. xanthorrhiza supercritical extract (CXS) standardized with xanthorrhizol on lipopolysaccharide (LPS)-induced periodontitis in an animal model. LPS was topically injected into the periodontium of Sprague-Dawley rats to induce periodontitis and CXS (30 and $100mg{\cdot}kg^{-1}{\cdot}day^{-1}$) was orally administered after day 12. Histologically, CXS inhibited the collapse of gingival tissue by preventing cell infiltration. CXS significantly downregulated the expression of matrix metalloproteases (MMPs) and inflammation-related biomarkers, such as nuclear factor-kappa B ($NF-{\kappa}B$) and interleukin-1 beta ($IL-1{\beta}$) in gingival tissue. CXS also improved bone remodeling by downregulating osteoclastic transcription factors, such as nuclear factor of activated T-cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K. In addition, CXS upregulated osteoblast differentiation-related markers, alkaline phosphate (ALP) and collagen type I alpha (COLA1). Thus, CXS can ameliorate periodontitis by inhibiting inflammation and improving bone remodeling.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

Inhibition of TNF-α-Mediated NF-κB Transcriptional Activity by Dammarane-Type Ginsenosides from Steamed Flower Buds of Panax ginseng in HepG2 and SK-Hep1 Cells

  • Cho, Kyoungwon;Song, Seok Bean;Nguyen, Huu Tung;Kim, Kyoon Eon;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Panax ginseng is a medicinal herb that is used worldwide. Its medicinal effects are primarily attributable to ginsenosides located in the root, leaf, seed, and flower. The flower buds of Panax ginseng (FBPG) are rich in various bioactive ginsenosides, which exert immunomodulatory and anti-inflammatory activities. The aim of the present study was to assess the effect of 18 ginsenosides isolated from steamed FBPG on the transcriptional activity of NF-${\kappa}B$ and the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated target genes in liver-derived cell lines. Noticeably, the ginsenosides $Rk_3$ and $Rs_4$ exerted the strongest activity, inhibiting NF-${\kappa}B$ in a dose-dependent manner. SF and $Rg_6$ also showed moderately inhibitory effects. Furthermore, these four compounds inhibited the TNF-${\alpha}$-induced expression of IL8, CXCL1, iNOS, and ICAM1 genes. Consequently, ginsenosides purified from steamed FBPG have therapeutic potential in TNF-${\alpha}$-mediated diseases such as chronic hepatic inflammation.