• Title/Summary/Keyword: inherent variability

Search Result 56, Processing Time 0.028 seconds

Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests (현장시험을 이용한 인천 송도지반의 변동성 분석)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Lee, Ju-Hyung;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

Characterization of Soil Variability of Songdo Area in Incheon (인천 송도지역 지반의 변동성 분석)

  • Kim, Dong-Hee;An, Shin-Whan;Kim, Jae-Jung;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.73-88
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties and soil layers at Song-do region in Korea. Since soil variability is sensitive to soil layers and soil types, the Cays by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt. And, the highly weathered rock and soil show the higher cays in the interpretation of the strength parameters of the fresh and weathered rock. And the proposed COV of Songdo area can be used for the reliability-based design procedure.

Evaluation of Estimation and Variability of Fines Content in Pohang for CPT-based Liquefaction Assessment (CPT 기반 액상화 평가를 위한 포항지역 세립분 함량 예측 및 변동성 평가)

  • Bong, Tae-Ho;Kim, Sung-Ryul;Yoo, Byeong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.37-46
    • /
    • 2019
  • Recently, the use of CPT-based liquefaction assessment method has increased by providing more accurate results than other field tests. In CPT-based liquefaction evaluation, various soil properties are predicted and they are used for liquefaction potential assessment. In particular, fines content is one of the important input parameters in CPT-based liquefaction assessment, so it is very important to use correct prediction model and to make quantitative evaluation of estimating variability of fines content. In this study, the error evaluation of existing models for prediction of fines content through CPT was performed, and the most suitable model was selected for Pohang area, where the liquefaction phenomenon was observed in the 2017. In addition, the inherent variability of soil was analyzed, and the estimating variability of fines content was evaluated quantitatively considering the inherent variability of soil, measurement error of CPT and transformation uncertainty of selected model.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : A General Framework for Uncertainty and Variability Analysis of Health Risk in Life Cycle Assessment (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part I : 전과정평가에 있어 확률론적 위해도 분석기법 적용방안에 관한 연구)

  • Choi, Kwang-Soo;Park, Jae-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.185-202
    • /
    • 2000
  • Uncertainty and variability in Life Cycle Assessment(LCA) have been significant key issues in LCA methodology with techniques in other research area such as social and political science. Variability is understood as stemming from inherent variations in the real world, while uncertainty comes from inaccurate measurements, lack of data, model assumptions, etc. Related articles in this issues were reviewed for classification, distinguish and elaboration of probabilistic/stochastic health risk analysis application in LCA. Concept of focal zone, streamlining technique, scenario modelling and Monte Carlo/Latin Hypercube risk analysis were applied to the uncertainty/variability analysis of health risk in LCA. These results show that this general framework of multi-disciplinary methodology between probabilistic health risk assessment and LCA was of benefit to decision making process by suppling information about input/output data sensitivity, health effect priority and health risk distribution. There should be further research needs for case study using this methodology.

  • PDF

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Reliability analysis of strip footing under rainfall using KL-FORM

  • Fei, Suozhu;Tan, Xiaohui;Gong, Wenping;Dong, Xiaole;Zha, Fusheng;Xu, Long
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.167-178
    • /
    • 2021
  • Spatial variability is an inherent uncertainty of soil properties. Current reliability analyses generally incorporate random field theory and Monte Carlo simulation (MCS) when dealing with spatial variability, in which the computational efficiency is a significant challenge. This paper proposes a KL-FORM algorithm to improve the computational efficiency. In the proposed KL-FORM, Karhunen-Loeve (KL) expansion is used for discretizing random fields, and first-order reliability method (FORM) is employed for reliability analysis. The KL expansion and FORM can be used in conjunction, through adopting independent standard normal variables in the discretization of KL expansion as the basic variables in the FORM. To illustrate the effectiveness of this KL-FORM, it is applied to a case study of a strip footing in spatially variable unsaturated soil under rainfall, in which the bearing capacity of the footing is computed by numerical simulation. This case study shows that the KL-FORM is accurate and efficient. The parametric analyses suggest that ignoring the spatial variability of the soil may lead to an underestimation of the reliability index of the footing.

Wave Reflection from Porous Ocean Sediment With Depth Dependent Properties (깊이 방향의 변화가 있는 해저 퇴적물에서 반사 특성)

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.1-7
    • /
    • 2006
  • This study examines the reflection characteristic of a thin transition layer of the ocean bottom showing variability with respect to depth. In order to model the surficial sediment simply, we reduce the Biot model to the depth dependent wave equation for the pseudo fluid using the fluid approximation (weak frame approximation). From the reduced equation, the difference between the inherent frequency dependency of the reflection and the frequency dependency resulting from a thin transition layer is investigated. Using Tang's depth porosity profile model of the surficial sediment [D. Tang et al., IEEE J. Oceanic Eng., vol.27(3), 546-560(2002)], we numerically simulated the reflection loss and investigated the contribution from both frequency dependencies. In addition, the effects of different sediment type and varying depth structure of the sediment are discussed.

Reliability-Based Design of Shallow Foundations Considering The Probability Distribution Types of Random Variables (확률변수의 분포특성을 고려한 얕은기초 신뢰성 설계)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan;Kim, Byung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.119-130
    • /
    • 2008
  • Uncertainties in physical and engineering parameters for the design of shallow foundations arise from various aspects such as inherent variability and measurement error. This paper aims at investigating and reducing uncertainty from deterministic method by using the reliability-based design of shallow foundations accounting for the variation of various design parameters. A probability distribution type and statistics of random variables such as unit weight, cohesion, infernal friction angle and Young's modulus in geotechnical engineering are suggested to calculate the ultimate bearing capacities and immediate settlements of foundations. Reliability index and probability of failure are estimated based on the distribution types of random variables. Widths of foundation are calculated at target reliability index and probability of failure. It is found that application and analysis of the best-fit distribution type for each random variables are more effective than adoption of the normal distribution type in optimizing the reliability-based design of shallow foundations.

Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects

  • Kim, WooSeok;Laman, Jeffrey A.;Park, Jong Yil
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.305-322
    • /
    • 2014
  • Reliability-based design limit states and associated partial load factors provide a consistent level of design safety across bridge types and members. However, limit states in the current AASHTO LRFD have not been developed explicitly for the situation encountered by integral abutment bridges (IABs) that have unique boundary conditions and loads with inherent uncertainties. Therefore, new reliability-based limit states for IABs considering the variability of the abutment support conditions and thermal loading must be developed to achieve IAB designs that achieve the same safety level as other bridge designs. Prestressed concrete girder bridges are considered in this study and are subjected to concrete time-dependent effects (creep and shrinkage), backfill pressure, temperature fluctuation and temperature gradient. Based on the previously established database for bridge loads and resistances, reliability analyses are performed. The IAB limit states proposed herein are intended to supplement current AASHTO LRFD limit states as specified in AASHTO LRFD Table 3.4.1-1.