• 제목/요약/키워드: infrared space telescope

검색결과 177건 처리시간 0.024초

Proposed Science Programs for SPICA Near-Infrared Instrument

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Koo, Bon-Chul;Im, Myung-Shin;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Moon, Bong-Kon;Park, Sung-Joon;Pyo, Jeong-Hyun;Cha, Sang-Mok;SPICA-FPCTeam, SPICA-FPCTeam
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation astronomical mission optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Due to its high angular resolution and unprecedented sensitivity, SPICA will enable us to resolve many key issues in the present-day astronomy. As an international collaboration, KASI proposed the near-infrared instrument which is composed of two parts; (1) science observation with the capability of imaging and spectroscopy covering $0.7{\mu}m$ to $5{\mu}m$ (FPC-S) (2) fine guiding to stabilize and improve the attitude (FPC-G). Here, we introduce the science programs proposed for SPICA/FPC-S.

  • PDF

Development Status of the SPICA/FPC

  • Pyo, Jeonghyun;Jeong, Woong-Seob;Lee, Dae-Hee;Matsumoto, Toshio;Moon, Bongkon;Tsumura, Kohji;Park, Kwijong;Park, Sung-Joon;Park, Youngsik;Kim, Il-Jung;Park, Won-Kee;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.82.1-82.1
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Owing to unprecedented sensitivity and high spatial resolution, the focal plane instruments are expected to perform the confusion-limited observation. The SPICA will challenge to reveal many astronomical key issues from the star-formation history of the universe to the planetary formation. The Korean 5contribution to SPICA as an international collaboration is the development of the near-infrared instrument, FPC (Focal Plane Camera). The Korean consortium for FPC proposed a key system instrument for the purpose of a fine guiding (FPC-G) complementing the AOCS (Attitude and Orbit Control System). The back-up instrument of FPC-G, FPC-S will be responsible for the scientific observations as well. Through the international review process, we have revised the scientific programs and made the feasibility study for the fine guiding system. Here, we report the current status of SPICA/FPC project.

  • PDF

THE NEXT-GENERATION INFRARED SPACE MISSION SPICA: PROJECT UPDATES

  • Nakagawa, Takao;Shibai, Hiroshi;Kaneda, Hidehiro;Kohno, Kotaro;Matsuhara, Hideo;Ogawa, Hiroyuki;Onaka, Takashi;Roelfsema, Peter;Yamada, Toru;SPICA Team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.331-335
    • /
    • 2017
  • We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5 m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

Status Report of SPICA/FPC

  • 정웅섭;;이대희;표정현;박성준;문봉곤;이창희;박영식;한원용;이형목;임명신
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.126.1-126.1
    • /
    • 2011
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Owing to unique capability of focal plane instruments onboard SPICA, it will enable us to resolve many astronomical key issues from the star-formation history of the universe to the planetary formation. The FPC (Focal Plane Camera) is a Korean-led near-infrared instrument as an international collaboration. Korean consortium for FPC proposed a key instrument responsible for a fine guiding (FPC-G). The back-up of FPC-G will make scientific observations as well. We have examined the legacy science programs for FPC and performed the feasibility study for the fine guiding system. Recently, the international review process is now in progress, in order to make a selection of the focal plane instruments. Here, we report the current status of SPICA/FPC project.

  • PDF

Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

  • Lee, Duk-Hang;Han, Won-Yong;Moon, Bong-Kon;Park, Young-Sik;Jeong, Woong-Seob;Park, Kwi-Jong;Lee, Dae-Hee;Pyo, Jeong-Hyun;Kim, Il-Joong;Kim, Min-Gyu;Matsumoto, Toshio
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권3호
    • /
    • pp.305-313
    • /
    • 2012
  • We conducted thermal analyses and cooling tests of the space observation camera (SOC) of the multi-purpose infrared imaging system (MIRIS) to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than $206^{\circ}K$. This is similar to the results of the passive cooling test (${\sim}200.2^{\circ}K$). For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about $160^{\circ}K$ in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below $200^{\circ}K$ with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

MID- AND FAR-INFRARED PROPERTIES OF LOCAL ACTIVE GALACTIC NUCLEI

  • Ichikawa, Kohei;Ueda, Yoshihiro;Terashima, Yuichi;Oyabu, Shinki;Gandhi, Poshak;Matsuta, Keiko;Nakagawa, Takao
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.275-279
    • /
    • 2012
  • We investigate the mid-infrared (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the infrared survey catalogs of AKARI, IRAS and WISE. Out of 135 non-blazar AGNs in the Swift/BAT 9-month catalog, we obtain the MIR photometric data for 128 sources in either the 9, 12, 18, 22, and $25{\mu}m$ band. We find a good correlation between their hard X-ray and MIR luminosities ranging three orders of magnitude (42 < log ${\lambda}L_{\lambda}$(9, $18{\mu}m$) < 45), which is tighter than that with the FIR luminosities at $90{\mu}m$. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori models rather than homogeneous ones.

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

THE SYNERGY OF LARGE AREA SURVEYS WITH AKARI AND HERSCHEL

  • Pearson, Chris;Serjeant, Stephen;Sedgwick, Chris;White, Glenn J.;Matsuhara, Hideo;Takagi, Toshinobu;Nagisa, Oi;Murata, Kazumi;Nakagawa, Takao;Yamamura, Issei
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.375-380
    • /
    • 2012
  • The Herschel Space Observatory is the European Space Agency's state of the art infrared space telescope launched into space on 14 May 2009, covering the wavelength range from 70-700 microns with 3 instruments SPIRE, PACS and HIFI. Large area surveys are being carried out by Herschel in the AKARI legacy fields at the North and South Ecliptic Poles and the AKARI All-Sky Survey provides additional synergy with the largest survey with Herschel, H-ATLAS, covering more than 500 square degrees. This paper reports on some of the early results of these synergies between Herschel and AKARI including the first comparison of the AKARI All-Sky Survey number counts with the deeper Herschel surveys.

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Development of SPICA FPC

  • Lee, Dae-Hee;Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Park, Young-Sik;Ree, Chang-Hee;Moon, Bong-Gon;Pyo, Jeong-Hyun;Park, Sung-Jun;Han, Won-Yong;Kim, Geon-Hee;Takeyama, Norihide
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.57.1-57.1
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) is a next generation infrared space telescope being prepared by JAXA, ESA and other international collaborators. We propose to develop FPC (Focal Plane Camera) consisting of two near-infrared cameras: FPC-G (I band) for focal plane guidance and FPC-S (0.7 - 5 um) for a back-up of FPC-G and a NIR instrument for scientific observations. In this talk, we introduce the requirement and the design concept of the FPC as well as the development strategy of the project.

  • PDF