• Title/Summary/Keyword: infrared rays

Search Result 177, Processing Time 0.029 seconds

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

Conservation of Buddhist Painting "Ten Kings of Hell" (십왕도(十王圖)의 보존처리(保存處理))

  • Cheon, Juhyun;Jang, Eunji;Kim, Woohyun
    • Conservation Science in Museum
    • /
    • v.4
    • /
    • pp.33-39
    • /
    • 2003
  • We examined the causes of the damage of a Joseon Buddhist painting, "Ten Kings of the Hell", for which we had performed conservation treatment while preparing for the special exhibition entitled "A Journey into the Joseon Buddhist Paintings", presented by the National Museum of Korea. For the parts that could not be easily observed by naked eyes, we examined it with microscopes, X-rays and infrared rays. Hereby we introduced the result of the scientific examination performed prior to the conservation treatment, and arranged its process for the "Ten Kings of the Hell".

Drying characteristics and quality of red ginseng using far-infrared rays

  • Ning, Xiaofeng;Lee, Junsoo;Han, Chungsu
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.371-375
    • /
    • 2015
  • Background: The current typical drying methods for red ginseng are sun drying and hot-air drying. The purpose of this study was to investigate drying characteristics of red ginseng by using far-infrared drying. Methods: The far-infrared drying tests on red ginseng were conducted at two drying stages: (1) high temperature for 24 h drying and (2) low temperature drying until the final moisture content was $13{\pm}0.5%$ (wet basis). The high temperature drying stage included three drying chamber temperature conditions of $60^{\circ}C$, $65^{\circ}C$, and $70^{\circ}C$. The low temperature drying stage was conducted at temperatures of $45^{\circ}C$ and $50^{\circ}C$. Drying characteristics were analyzed based on factors such as drying rate, color changes, energy consumption, and saponin content. The results were compared with those of the hot-air and sun drying methods. Results: The results revealed that increases in drying temperature caused a decrease in drying time and energy consumption for far-infrared drying. The saponin content decreased under all drying conditions after drying, the highest value (11.34 mg/g) was observed at drying conditions of $60{\sim}50^{\circ}C$. The sun drying condition showed the lowest color difference value when compared with far-infrared and hot-air drying. Conclusion: The far-infrared drying showed a faster drying rate, higher saponin content, lower color difference value, and a decrease in energy consumption than seen in hot-air drying.

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • Park Su-Yeol;Sin Seung-Rim;Sin Jong-Il;O Se-Hwa;Jeon Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2005.05a
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF

Stimulation of Blood Flow Needs a Parallel Magnetic Field and Psycho-physics acupuncture

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.105-112
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, fur examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Any magnet absorbs n-rays to S pole and sends out the $\pi$-rays from N pole. Proton are constructed with the closed n-rays quantum-mechanically. The crystallizing n-bonding makes two $\pi$-far infrared rays of one wave length between two protons if two $\pi$-rays are supplied to each proton. It is easily done for a $\pi$-ray to be absorbed to a proton if there is a parallel magnetic flow to the blood flow because a $\pi$-ray advances axially under a magnetic field and a proton looks like a sphere. A axially advancing disk-like $\pi$-ray can meet more easily the coming spheres than from the other directions. The blood crystals stimulate the autonomous nerves on the blood vessels during the flow by their mechanical sliding collisions. SM n-ray meridian therapy and SMACN $\pi$-ray meridian therapy show the stimulation of blood flow and also combinational experiment between SM $\pi$-ray meridian therapy and n-ray psycho-physics acupuncture shows more clearly that magnet is forcing to make $\pi$-rays absorbed to the nucleons.s.ons.

  • PDF

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

The Current State of Intended Equipment for Heating in Medical Use Based on Domestic Licensed Medical Devices (국내 인·허가 온열의료기기 기술 현황 조사 및 분석)

  • Su-Ran Lim;Jung-Hwan Park;Ji-Yeun Park;Song-Yi Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.4
    • /
    • pp.156-168
    • /
    • 2023
  • Objectives : This study aimed to determine the status of thermal stimulation devices approved in Korea for medical applications over the past 10 years, and based on this, to obtain insight for future thermal treatment in Korean medical institutions. Methods : We searched the item classification list entitled "Regulations on Medical Device Items and Rating by Item" from the Ministry of Food and Drug Safety Notice No. 2021-24, 2021 (Enforced March 19, 2021; www.mfds.go.kr) for individually licensed heaters using the terms "heat" and "heating". Results : We identified 17 items of thermal stimulation product group, of which 1,308 devices were licensed by February 4, 2022, and 53.2% of them (n=696) were devices with valid permits for distribution in Korea. Among the licensed devices, heating pad systems under/overlay (electric, home use) were approved the most, but combinational stimulator (for medical use, home use; Grade 2) accounted for the highest percentage among the current valid permission. Moxibustion apparatuses were licensed separately for electrical use and non-electrical use, and occupied a low percentage of the total devices. We analyzed 307 devices that were accompanied by technical documents and found that the heat sources were wires in 145 (47.2%), infrared rays in 44 (14.3%) and ultrasonic waves in 42 (13.7%) devices. Most (83.1%) devices were used for pain relief, while other applications included beauty, cancer treatment, maintenance of infant body temperature, and healing fractures. Conclusions : Thermal stimulation devices accounted for about 0.9% of all medical devices, and among them, combinational stimulators and heating pad systems under/overlay had the most valid permits. Thermal stimulation devices using heating wires and infrared rays were the most prevalent, and most were used to relieve pain. In order to develop a range of thermal stimulation devices that can be utilized in Korean medical institutions, it is imperative that they have potential applications beyond pain management, addressing various medical purposes. To achieve this, foundational research is necessary to effectively apply diverse heat sources based on medical objectives.

A Study of far infrared rays production by ocher Illumination cap (황토 조명등을 이용한 원적외선 발생 연구)

  • 김원섭;윤영근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.191-195
    • /
    • 2003
  • 우리는 황토 조명등을 제작하여 원 적외선 발생 실험을 하였다. 실험에는 백열전구 200W, 실내온도 21도, 습도 38%의 조건에서 열화상실험과 TF-IR(적외선 분광방사 측정장치)에 의한 원적외선 방사한도를 측정하였으며, 그 결과 방사율 0.914와 방사에너지 6.23$\times$$10^2$ (w/$m^2$.$\mu\textrm{m}$) 가 얻어졌다. 이와 같은 결과로 황토조명등에서 원적외선이 발생한 것을 확인하였다.

  • PDF

Heat-ray Shielding Property of Nanocomposites of Poly(acrylic acid) Doped with Copper Sulfide

  • Gotoh, Yasuo;Shibata, Kazuaki;Fujimori, Yoshie;Ohkoshi, Yutaka;Nagura, Masanobu
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.71-72
    • /
    • 2003
  • The aim of our study is to prepare nanocomposites consisting polymer/inorganic nanoparticles and investigate their physical properties as a functional material. In this study, a nanocomposite of copper sulfide (CuS) nanoparticles introduced into a poly(acrylic acid) matrix was prepared and the optical absorption property was measured. The composite exhibited strong absorption of both ultraviolet and near-infrared rays, indicating that the composite is applicable to a solar radiation shielding filter. The wavelength of the near infrared absorption was controlled from ca.1000 nm to 1700 nm by heat and acidic solution treatments.

  • PDF