• Title/Summary/Keyword: infrared radiation heating

Search Result 49, Processing Time 0.019 seconds

Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator (열전소자를 이용한 적외선 방사량 감소 기술에 관한 연구)

  • Kim, Hoon;Kim, Kyomin;Kim, Woochul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

EFFECT OF FIR FLUXES ON CONSTRAINING PROPERTIES OF YSOS

  • Ha, Ji-Sung;Lee, Jeong-Eun;Jeong, Woong-Seob
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.213-223
    • /
    • 2010
  • Young Stellar Objects (YSOs) in the early evolutionary stages are very embedded, and thus they emit most of their energy at long wavelengths such as far-infrared (FIR) and submillimeter (Submm). Therefore, the FIR observational data are very important to classify the accurate evolutionary stages of these embedded YSOs, and to better constrain their physical parameters in the dust continuum modeling. We selected 28 YSOs, which were detected in the AKARI Far-Infrared Surveyor (FIS), from the Spitzer c2d legacy YSO catalogs to test the effect of FIR fluxes on the classification of their evolutionary stages and on the constraining of envelope properties, internal luminosity, and UV strength of the Interstellar Radiation Field (ISRF). According to our test, one can mis-classify the evolutionary stages of YSOs, especially the very embedded ones if the FIR fluxes are not included. In addition, the total amount of heating of YSOs can be underestimated without the FIR observational data.

INFRARED EMISSION FROM SPHERICAL DUST CLOUDS

  • Lee, Hyung-Mok;Hong, Seung-Soo;Yun, Hong-Sik;Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.2
    • /
    • pp.111-128
    • /
    • 1992
  • Infrared emissions from spherical dust, clouds are calculated using quasi-diffusion method. We have employed graphite-silicate mixture with power-law size distribution for the dust model. The grains are assumed to be heated and cooled by radiative processes only. The primary heating source is diffuse interstellar radiation field. hut the cases with an embedded source are also considered. Since graphite grains have higher temperature than silicate grains, the observed IR emission is mainly due to graphite grains, unless the fraction of graphite grains is negligibly small. The color temperature of Bok globules obtained from IRAS 60 and $100{\mu}m$ data are found to be consistent with the dust cloud with graphite-silicate mixture exposed to average interstellar radiation field. The color temperature is sensitive to the external radiation field, but rather insensitive to the size distribution of the grains. We found that the density distribution can be recovered outside the beam size using the inversion technique that assumes negligible optical depth. However, the information within the beam size is lost for if beam convolved intensity distributions are used in deriving density profile.

  • PDF

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER (근적외선 열풍기의 복합열전달에 관한 수치적 연구)

  • Choi, H.K.;Yoo, G.J.;Kim, I.H.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis (적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가)

  • Moon, Jong-Pil;Yun, Nam-Kyu;Lee, Sung-Hyoun;Kim, Hak-Joo;Lee, Su-Jang;Kim, Young-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

Cause Analysis Ignited at a Far Infrared Radiation Heater (원적외선 히터에서 출화된 화재의 원인분석)

  • Kim, Dong-Ook;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • This research studied about the cause analysis of fire that was occurred in far infrared rays heater to base on the fire examples. Fire of electric heater was apt to commit error that handled an over-heating accident by judged molten mark in heat ray. Molten mark which was attached in heat ray was appeared to the form of layer short circuit by other metal material, but other metal material was not found beside the ingredient of heat wire which was mixed to an alloy of Fe-Cr-Al according to result of ingredient distribution by SEM/EDX. Also, the result of overheating experiment by layer short circuit and overvoltage showed higher febrility than normal, but there was no possibility of fire occurrence. This paper will be contributed to science for cause analysis of electric fire through analyzing physical, chemical and flame features of burnout heater on the basis of diagnosis of fire that was happened in infrared rays heater.

A Theoretical Study of Photothermal Pulsed Radiometry Method for the Thermal Diffusivity Measurement (재료의 열확산계수 결정을 위한 광열복사법의 이론적 연구)

  • Yook, Hyung-Kyu;Yoo, Jai-Suk;Kim, Hyun-Jung;Lee, Kwang-Jai
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.27-34
    • /
    • 2005
  • We analyze in detail axially symmetric theoretical study for the photothermal pulsed radiometry of a cylindrical model. The theoretical solutions describe the transient infrared radiation from the sample heated by short-duration pulsed heating. In the conventional transmission radiometry technique, the excitation source and the detector are on opposite sides of the sample, otherwise in the new single ended radiometry technique, the excitation source and the detector are on same sides of the sample. The analytical solution described for photothermal radiometry in this study would not need to cut or polish samples to measure the thermal diffusivity. Therefore the radial area and axial thickness of samples are not limited. The effects of excitation pulse duration and the area of heat source are discussed.

Drying Characteristics of 25 kW Class Industrial Dryer Adopting Mat Type Premixed Catalytic Burner (매트 형태의 예혼합 촉매 버너를 활용한 25 kW급 건조기의 성능 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Song, Kwang-Sup;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2856-2861
    • /
    • 2008
  • A catalytic burner has been developed to utilize thermal energy from the fossil fuel without nitrogen oxides (NOx) emission. The burner is shaped into a mat to maximize the heating surface. Premixed combustion has been developed to be used in a closed chamber, such as a radiation type industrial dryer. The burner yields the thermal energy in the form of thermal radiation in the infrared regime, which is proved to be effective to dry organic substances for low moisture condition. Thermal efficiency including the sensible heat is better correlated to the moisture compared to the dry rate.

  • PDF