• Title/Summary/Keyword: infrared moisture determination.

Search Result 35, Processing Time 0.032 seconds

Quantification of Skin Moisture in Hairless Mouse by using a Portable NIR System and a FT NIR Spectrometer (Photo Diode Array형의 휴대용 근적외 분광기와 FT 근적외 분광기를 이용한 Hairless Mouse 피부 수분 정량)

  • Suh, Eun-Jung;Woo, Young-Ah;Kim, Hyo-Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.115-121
    • /
    • 2005
  • In this study, the performance of a portable NIR system and a FT NIR spectrometer were compared to determine water content of hairless mouse skin. The stratum corneum parts wer e separated from the epidermal tissues by trypsin solution. NIR diffuse reflectance spectra of hairless mouse skin were acquired using a fiber optic probe. In the near infrared, water molecules show two clear absorption bands at 1450 nm from first overtone of O-H stretching and 1940 nm from the combination involving O-H stretching and O-H deformation. It was found that the variations of O-H absorption band according to water content. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed a good correlation between NIR predicted value and the absolute water content of separated hairless mouse skin, in vitro. For both the portable and the FT NIR spectrometer, These studies showed the possibility of a rapid and nondestructive skin moisture measurement using NIR spectroscopy. The portable NIR spectrometer with a photodiode arrays-microsensor could be more rapidly applied for the determination of water content with comparable accuracy with the performance of a FT spectrometer .

Rapid Quality Evaluation of Dried Red Pepper by Near-infrared Spectroscopy (근적외 분광분석법에 의한 건조고추의 품질측정)

  • Cho, Rae-Kwang;Hong, Jin-Hwan;Kim, Hyun-Koo;Park, Moo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 1990
  • A near-infrared reflectance spectroscopic(NIRS) method which has been recently developed for a non-destructive method for measuring ingredients in foods and agricultural products especially was evaluated for the determination of capsanthin, total sugar, capsaicin and moisture contents in Korean domestic red peppers. A multiple linear regression analysis with the data obtained by standard-laboratory methods(capsaicin by GC, capsanthin by Colorimetry, total sugar by HPLC and moisture by Vacuum drying method) and NIRS method was carried out to make a calibration. The accuracy of the NIRS method was found to be adequate when the standard-laboratory values for a set of sample that were not included in the calibration, were compared. It is concluded that the NIRS method is suitable for the determination of total sugar and capsanthin.

  • PDF

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Possibility of the Nondestructive Quality Evaluation of Apples using Near-infrared Spectroscopy (근적외 분광분석법을 응용한 사과의 비파괴 품질 측정 가능성 조사)

  • Sohn, Mi-Ryeong;Kwon, Young-Kil;Lee, Kyung-Hee;Park, Woo-Churl;Cho, Rae-Kwang
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.153-159
    • /
    • 1998
  • A possibility of evaluation of the major internal quality factors-Brix, moisture contents, firmness and acid content in the Korean domestic 'Fuji'apple fruits by near-infrared reflectance spectroscopic (NIRS) methods were investigated. A multiple linear regression(MLR) analysis between the data obtained by physico- chemical analysis method using refractometer, freeze drier, texture analyzer and titrater and NIR spectral data was carried out to make a calibration. The standard error of prediction(SEP) of Brix, moisture, firmness and acid content were $0.50^{\circ}Brix,\;0.64%,\;0.14kg/cm^2$ and 0.07%. It is concluded that NIRS methods can be used to evaluate Brix and moisture contents of in a apple non-destructive and rapid way but the accuracy for determination of firmness and acid content was slightly low.

  • PDF

Development of Moisture Content Prediction Model for Larix kaempferi Sawdust Using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 낙엽송 목분의 함수율 예측 모델 개발)

  • Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kang, Kyu-Young;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • The moisture content of sawdust must be measured accurately and controlled appropriately during storage and transportation because biological degradation could be caused by improper moisture. In this study, to measure the moisture contents of Larix kaempferi sawdust, the near-infrared reflectance spectra (Wavelength 1000-2400 nm) of sawdust were used as detection parameter. After acquiring the NIR reflection spectrum of specimens which were humidified at each relative humidity condition ($25^{\circ}C$, RH 30~99%), moisture content prediction model was developed using mathematical preprocessings (e.g. smoothing, standard normal variate) and partial least squares (PLS) analysis with the acquired spectrum data. High reliability of the MC regression model with NIR spectroscopy was verified by cross validation test ($R^2$ = 0.94, RMSEP = 1.544). The results of this study show that NIR spectroscopy could be used as a convenient and accurate method for the nondestructive determination of moisture content of sawdust, which could lead to optimize wood utilization.

Preparation and Characterization of Calcium Alginate Microcapsules by Emulsification-Internal Gelation (에멀션-내부 젤화에 의한 알긴산 칼슘 마이크로캡슐의 제조 및 특성)

  • Park Soo-jin;Kang Jin-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.369-374
    • /
    • 2005
  • In this work, the calcium alginate microcapsules containing lemon oil were prepared by emulsification-internal gelation and their potential use as aromatherapy was examined by the controlled release system. The lemon oil encapsulated in the alginate was successfully observed by Fourier transform (FT-IR) spectroscopy and differential scanning calorimeter (DSC) measurements. Analysis of the diameters and shapes of microcapsules was conducted by scanning electron microscopy (SEM). The mean diameters ranging from 4 to 7 um and encapsulation yield ranging from 50 to $85\%$ were obtained. The controlled release of the lemon oil at $37^{circ}$ was demonstrated by the infrared moisture determination (IMDB). It was found that the amount of released lemon oil decreased with increasing concentrations of alginate and $CaCl_2$ due to the higher the cross-linking density of the capsules prepared. The oil release from the capsule was measured as a function of physical force. We confirmed that the external factor could control the collapse of capsule wall and the release rate.

Depth-profiling of skin in the near infrared using fiber optic probes

  • Woo, Young-Ah;Ahn, Jhii-Weon;Suh, Eun-Jung;Kim, Hyo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.235.1-235.1
    • /
    • 2002
  • In previous study, we showed the feasibility of the in vivo use of portable near infrared system for the determination of human skin moisture. In order to optimize the acquiring condition of NIR spectrum of skin. skin depth profiling was investigated changing the distance and gap size between illumination and receiving of radiation in the terminal of fiber probe. The colleted light information could be controlled depending the distance and gap of fiber optic probe. (omitted)

  • PDF

Skin depth profiling by using fiber optic probes in the near infrared

  • Woo, Young-Ah;jung, Suh-Eun;Kim, Hyo-Jin
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.218-218
    • /
    • 2003
  • Recently we showed the prototype portable device for the determination of human skin moisture by using near infrared spectroscopy. In order to optimize the acquiring condition of NIR spectrum of skin and control the target information of water depending the site such as epidermis and dermis, skin depth profiling was investigated changing the distance between illuminations and receiving of radiation in the terminal of fiber probe. The colleted light information could be controlled by changing the distance of the fiber optic probes. It was confirmed that the longer distance we used, the deeper site from the skin surface we could get information from in this study. Four kinds of probes with distances such as 0.03 mm, 0.1 mm, 0.5 mm, and 1.0 mm were used. In addition, the gap size from 0.3 mm to 3.0 mm was studied to control the intensity of water absorbance effectively and to avoid saturation of water absorption. We also investigated the reference materials depending the reflectance ratio for water absorption not to be saturated because of the strong absorptivity of water. Furthermore, spectroscopic information regarding free water and bound water around 1850 nm was investigated by using the different distance of fiber optic probes. This study would be great help to control the spectroscopic information of water to be measured depending the site where water exists.

  • PDF

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Vegetation Cover Characteristics for Five Soils at Chungbuk Prefecture and Tideland Soil Using Remote Sensing Technology (원격탐사(RS) 기법을 이용한 충북지역 5개 토양과 갯벌토양의 식생피복특성)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2003
  • In support of remote sensing applications for monitoring processes of the Earth system, research was conducted to analyze the basic spectral response related to background soil and vegetation cover characteristics in the visible and reflective infrared wavelengths. Surface samples of seven stations were examined. Five soils were from land-field and two soils from tideland areas. The vegetation cover experiment was conducted on seven soil samples with known natural moisture content (%) by weight. To study the effect of vegetation cover, spectral measurements were taken on five or six vegetation cover treatments of the seven soils with 3 replications in air dry conditions. For collecting RS base data, used spectro-radiometer that measures reflection characteristics between 300~1,100nm was used and measured the reflection of vegetation from bean leaves. The relationships were evaluated for both a general soil line and for the individual lines of five soils, under air-dried condition as well as different vegetation cover ratio, through the determination of the line parameters. As vegetation cover ratio in bean leaves increases, features of soil reflectance decrease and those of plant reflectance become more and more apparent. In proportion to vegetation cover rate, near-infrared reflectance increased and visible reflectance decreased. Analysis results are compared to commonly used vegetation indices(RVI and NDVI ).