• Title/Summary/Keyword: infrared image sensor

Search Result 170, Processing Time 0.025 seconds

A Study on the Design of a Current Type ROIC for Uncooled Bolometer Thermal Image Sensor Using Correlated Double Sampling

  • Kwak, Sang-Hyeon;Lee, Po;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.7-8
    • /
    • 2009
  • In the presence of infrared light, a CMOS Readout IC (ROIC) for a microbolometer typed infrared sensor detects the voltage or current that is caused by the changing in resistance in the bolometer sensor. A serious problem in designing the ROIC is how the value of the bolometer and reference resistors vary because of variations in manufacturing process. Since different pixel have different, resistance values, sensor operations must contend with fixed pattern noise (FPN) problems. In this paper, we propose a novel technique to compensate for the fluctuation in reference resistance by tiling into account the process variation. By using constant current source basing and correlated double sampling, we solved FPN.

  • PDF

A Study on the Design of a ROIC for Uncooled Bolometer Thermal Image Sensor using Reference Resistor Compensation (기준저항 보상회로를 이용한 비냉각형 볼로미터 검출회로의 설계에 관한 연구)

  • Yu, Seung-Woo;Kwak, Sang-Hyeon;Jung, Eun-Sik;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.119-122
    • /
    • 2009
  • As infrared light radiates, the CMOS Readout IC (ROIC) for the microbolometer typed infrared sensor detects voltage or current which is caused by the variation of resistance in the bolometer sensor. A serious problem we may have in designing the ROIC is the value of bolometer and reference resistors will be changed due to process variation. Since each pixel does not have the same value of resistance, fixed pattern noise problems happen during the sensor operations. In this paper, we propose a novel technique to compensate the fluctuation of reference resistance with taking account of process variation. By using a comparator and a cross coupled latch, we will make the value of reference resistor same as the bolometer's.

Implementation of Illegal Entry Detection System using Sensor Node and Image Processing (센서 노드와 영상처리 기법을 이용한 불법 침입 감지 시스템 구현)

  • Kim, Kyung-Jong;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, we design and implement an illegal entry detection system which efficiently can detect illegal intruders applying image processing technique on the perceived value of the infrared sensor and acquired image from two-way wireless camera(DRC) for prevention of damage caused by theft and the ratio of security in the security of the square such as livestock, agricultural products, and logistics warehouse. At first, the proposed system acquires the image from wireless camera when infrared sensor detect the location of illegal intruders. and then, the system process to determine movement by applying image process technique with acquired image. Finally, we send the detected and analyzed the results and the final image to security company and mobile device of owner.

  • PDF

Development of Near Infrared Radiation Image Board for Performace Improvement of Grain Sorter (곡물선별기의 선별력 향상을 위한 근거리적외선 영상보드 개발)

  • Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Currently, most of the grain sorter uses CCD optic camera to find defective products. The aim of this paper is to use the CCD camera, and aim for improving the sorting power of the grain separator by using NIR(Near Infrared Radiation) sensor based on moisture content measurement algorithm. We intend to develop a system to develop an NFC imaging system in real time by developing an NIR imaging system and developing the grain sorter system that is considered to be defective in real time by checking the internal moisture content of the raw material in the real time.

  • PDF

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Reduction of Radiated Emission of an Infrared Camera Using a Spread Spectrum Clock Generator (확산 스펙트럼 생성기를 이용한 적외선 카메라의 방사노이즈 저감에 관한 연구)

  • Choi, Bongjun;Lee, Yongchun;Yoon, Juhyun;Kim, Eunjun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1097-1104
    • /
    • 2016
  • The infrared camera is difficult to satisfy the RE-102 specification of Mil-Std-461. Especially, in the case of UAV electronics, shielded cable is not used, so it is difficult to meet the electromagnetic compatibility standard. In the RE-102 test of the IR camera for UAV, radiated noise exceeding 30 dBuV/m was observed in the range of 50 MHz to 200 MHz. As a result of pcb em scan, peak noise which caused by the harmonic frequency of the digital control signal clock was observed. Radiated noise was reduced by up to 22.9 dBuV/m by applying the spread spectrum clock generator(SSCG) with 3 % down spreading method to the camera control clock.

Visibility Sensor with Stereo Infrared Light Sources for Mobile Robot Motion Estimation (주행 로봇 움직임 추정용 스테레오 적외선 조명 기반 Visibility 센서)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.108-115
    • /
    • 2011
  • This paper describes a new sensor system for mobile robot motion estimation using stereo infrared light sources and a camera. Visibility is being applied to robotic obstacle avoidance path planning and localization. Using simple visibility computation, the environment is partitioned into many visibility sectors. Based on the recognized edges, the sector a robot belongs to is identified and this greatly reduces the search area for localization. Geometric modeling of the vision system enables the estimation of the characteristic pixel position with respect to the robot movement. Finite difference analysis is used for incremental movement and the error sources are investigated. With two characteristic points in the image such as vertices, the robot position and orientation are successfully estimated.

Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency (밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Yoo, Hyun-Jung;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.736-743
    • /
    • 2013
  • In IRST(infrared search and track) system, the small target detection is very difficult because the IR(infrared) image have various clutter and sensor noise. The noise and clutter similar to the target intensity value produce many false alarms. In this paper. We propose the adaptive detection method which obtains optimal target detection using the image intensity information and the prior information of target. In order to enhance the target, we apply the human visual system. we determine the adaptive threshold value using image intensity and distance measure in target enhancement image. The experimental results indicate that the proposed method can efficiently extract target region in various IR images.

Pseudo-RGB-based Place Recognition through Thermal-to-RGB Image Translation (열화상 영상의 Image Translation을 통한 Pseudo-RGB 기반 장소 인식 시스템)

  • Seunghyeon Lee;Taejoo Kim;Yukyung Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Many studies have been conducted to ensure that Visual Place Recognition is reliable in various environments, including edge cases. However, existing approaches use visible imaging sensors, RGB cameras, which are greatly influenced by illumination changes, as is widely known. Thus, in this paper, we use an invisible imaging sensor, a long wave length infrared camera (LWIR) instead of RGB, that is shown to be more reliable in low-light and highly noisy conditions. In addition, although the camera sensor used to solve this problem is an LWIR camera, but since the thermal image is converted into RGB image the proposed method is highly compatible with existing algorithms and databases. We demonstrate that the proposed method outperforms the baseline method by about 0.19 for recall performance.

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.