• Title/Summary/Keyword: infrared image sensor

Search Result 170, Processing Time 0.029 seconds

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

FPGA-Based Real-Time Multi-Scale Infrared Target Detection on Sky Background

  • Kim, Hun-Ki;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, we propose multi-scale infrared target detection algorithm with varied filter size using integral image. Filter based target detection is widely used for small target detection, but it doesn't suit for large target detection depending on the filter size. When there are multi-scale targets on the sky background, detection filter with small filter size can not detect the whole shape of the large targe. In contrast, detection filter with large filter size doesn't suit for small target detection, but also it requires a large amount of processing time. The proposed algorithm integrates the filtering results of varied filter size for the detection of small and large targets. The proposed algorithm has good performance for both small and large target detection. Furthermore, the proposed algorithm requires a less processing time, since it use the integral image to make the mean images with different filter sizes for subtraction between the original image and the respective mean image. In addition, we propose the implementation of real-time embedded system using FPGA.

Fabrication of Uncooled Pyroelectric Infrared Detector using Surface M Micromachining Technology (표면 마이크로 가공기술을 이용한 비냉각 초전형 적외선 검출소자 제작)

  • 장철영;고성용;이석헌;김동진;김진섭;이재신;이정희;한석룡;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.115-118
    • /
    • 2000
  • Uncooled pyroelectric infrared detectors based on BST(B $a_{-x}$S $r_{x}$Ti $O_3$) thin films have been fabricated by RF magnetron sputtering and surface Micromachining technology. The detectors form BST thin film ferroelectric capacitors grown by RF magnetron sputtering on N/O/N(S $i_3$ $N_4$/ $SiO_2$/S $i_3$ $N_4$) membrane. The sputtered BST thin film exhibits highly c-axis oriented crystal structure that no poling treatment for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. surface-Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency Gold-black is evaporated on top of the sensing elements used the thermal evaporator. fabricated uncooled pyroelectric infrared detectors is highly output voltage at the low temperature(1$^{\circ}C$).).).

  • PDF

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Study on Obstacle Avoidance Algorithm of Autonomous Mobile Robots Using Infrared Sensor and Camera (적외선센서와 카메라를 이용한 자율주행로봇의 장애물회피 알고리즘 연구)

  • Jung Woo Sohn;Ho Sung Yun;Wansu Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.192-198
    • /
    • 2023
  • This paper proposes an algorithm for autonomous mobile robots to effectively navigate obstacles. In order to detect obstacles infrared sensors and cameras are employed. The infrared sensor is utilized to calculate the distance to obstacles while the captured images from the camera are used to determine the width of obstacles. To compute obstacle width, binary image processing, contour detection, and the minimum area rectangle technique are employed. Using the distance to obstacles and obstacle width, the avoidance angle is calculated, and this angle is incorporated into steering control. The proposed obstacle avoidance algorithm was implemented on an autonomous robot, and experimental results demonstrated a maximum reduction in avoidance time by 8.5 seconds compared to using only infrared sensors when the obstacle width is 30cm.

Visible and NIR Image Synthesis Using Laplacian Pyramid and Principal Component Analysis (라플라시안 피라미드와 주성분 분석을 이용한 가시광과 적외선 영상 합성)

  • Son, Dong-Min;Kwon, Hyuk-Ju;Lee, Sung-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • This study proposes a method of blending visible and near infrared images to enhance edge details and local contrast. The proposed method consists of radiance map generation and color compensation. The radiance map is produced by a Laplacian pyramid and a soft mixing method based on principal component analysis. The color compensation method uses the ratio between the composed radiance map and the luminance channel of a visible image to preserve the visible image chrominance. The proposed method has better edge details compared to a conventional visible and NIR image blending method.

Thermal Characterization of Individual Pixels in Microbolometer Image Sensors by Thermoreflectance Microscopy

  • Ryu, Seon Young;Choi, Hae Young;Kim, Dong Uk;Kim, Geon Hee;Kim, Taehyun;Kim, Hee Yeoun;Chang, Ki Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.533-538
    • /
    • 2015
  • Thermal characterization of individual pixels in microbolometer infrared image sensors is needed for optimal design and improved performance. In this work, we used thermoreflectance microscopy on uncooled microbolometer image sensors to investigate the thermal characteristics of individual pixels. Two types of microbolometer image sensors with a shared-anchor structure were fabricated and thermally characterized at various biases and vacuum levels by measuring the temperature distribution on the surface of the microbolometers. The results show that thermoreflectance microscopy can be a useful thermal characterization tool for microbolometer image sensors.

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Bolometer-Type Uncooled Infrared Image Sensor Using Pixel Current Calibration Technique (화소 전류 보상 기법을 이용한 볼로미터 형의 비냉각형 적외선 이미지 센서)

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Oh, Chang-woo;Shin, Jang-Kyoo;Park, Jae-Hyoun;Lee, Kyoung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.349-353
    • /
    • 2016
  • Recently, research on bolometer-type uncooled infrared image sensor which is made for industrial applications has been increasing. In general, it is difficult to calibrate fixed pattern noise (FPN) of bolometer array. In this paper, average-current calibration algorithm is presented for reducing bolometer resistance offset. A resistor which is produced by standard CMOS process, on the average, has a deviation. We compensate for deviation of each resistor using average-current calibration algorithm. The proposed algorithm has been implemented by a chip which is consisted of a bolometer pixel array, average current generators, current-to-voltage converters (IVCs), a digital-to-analog converter (DAC), and analog-to-digital converters (ADCs). These bolometer-resistor array and readout circuit were designed and manufactured by $0.35{\mu}m$ standard CMOS process.

Development of Intelligent Position Compensation Scheme for Virtual Game Interface (실감 게임 인터페이스를 위한 지능형 위치 보정 기법 개발)

  • Kim, Sung-Ho;Yun, Seong-Ung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.439-444
    • /
    • 2009
  • Recently, a wide range of next-generation's game consoles has been developed by many game makers. Particularly, active interaction between users and games is required more than ever before for giving gamers the fullest pleasure. In this work, an infrared image sensor based position recognition system which can be used for virtual game interface is proposed. Furthermore, two kinds of compensation algorithms and Extended Kalman Filter are utilized to enhance the performance of the proposed system. The proposed system can effectively generate the position of the gamer in the face of the coordinate distortion and noise. To verity the feasibilities of the proposed system, various experiments are carried out.