• Title/Summary/Keyword: infrared image analysis

Search Result 249, Processing Time 0.025 seconds

DPICM subprojectile counting technique using image analysis of infrared camera (적외선 영상해석을 이용한 이중목적탄 자탄계수 계측기법연구)

  • Park, Won-Woo;Choi, Ju-Ho;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.11-16
    • /
    • 1997
  • This paper describes the grenade counting system developed for DPICM submunition analysis using the infrared video streams, and its some video stream processing technique. The video stream data processing procedure consists of four sequences; Analog infrared video stream recording, video stream capture, video stream pre-processing, and video stream analysis including the grenade counting. Some applications of this algorithms to real bursting test has shown the possibility of automation for submunition counting.

  • PDF

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Design of 850 nm Near Infrared and Galvanic Current Based Eyeglass-Type Device for Periorbital Wrinkle Treatment and Verification of Treatment Performance through Image Analysis (850 nm 파장대 근적외선과 갈바닉 전류기반의 눈가 주름 치료기 개발 및 영상 분석을 통한 치료성능 검증)

  • Ahn, Sung Su;Kwon, Ki Jin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1379-1386
    • /
    • 2018
  • In this paper, we proposed eyeglass type periorbital wrinkle treatment device for reducing and improving periorbital wrinkles using near infrared LED of 850nm wavelength and galvanic current. The proposed periorbital wrinkle treatment device is equipped with a control system based on F-PCB. It consists of eight near-infrared LEDs and four indicator LEDs for treatment of right and left periorbital wrinkles. The eyeglass frame is coated with conductive material, so galvanic current can flow to the skin of periorbital wrinkle contacted to it. One male adult in the mid-40s was allowed to use the device for 10 minutes every day for 4 weeks. After 4 weeks, image analysis using optical equipment for measuring wrinkles indicated that wrinkle indexes were reduced.

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

Thermo-Analysis of Machining Center Main-Axis Thermo-Displacement for Infrared Rays Thermo-Image Camera (적외선 열화상 카메라를 이용한 머시닝 센터 주축 열변위에 관한 열해석)

  • Kim, Jae-Yeol;Yoon, Sung-Un;Yim, Noh-Bin;Yu, Sin;Ma, Sang-Dong;Yang, Dong-Jo;Song, In-Suk
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.125-130
    • /
    • 2001
  • Diagnosis or measurements using Infrared thermo-image hasn t been available. A quick diagnosis and thermal analysis can be possible when that kind of system is introduced to the investigation of each part. In this study, Infrared Camera, Thermo-vision 900 was used in order to investigate. Infrared Camera usually detects only Infrared wave from the light in order to illustrate the temperature distribution. Infrared diagnosis system can be applied to various field. Also, it is more effective to analyze temperature distribution on the machining center main-axis process.

  • PDF

Analyzing Refractory Bricks of Ladles using Infrared Images (열화상 영상을 이용한 래들의 내화물 열화도 분석)

  • Lee, Sang Jun;Jeon, Yong-Ju;Kim, Sang Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.291-300
    • /
    • 2015
  • In the steel manufacturing process heat-endurance deterioration of a ladle used to cause a big accident. In this paper, an infrared imaging system and image analyzing procedure are proposed for inspecting refractory bricks of a ladle. The proposed algorithm contains following three parts: two-stage image selection procedure, reference point detection, and analysis of heat-endurance deterioration. Experiments were conducted with real data from a steel plant and detailed configuration of infrared imaging system was presented.

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

Thermal Infrared Image Enhancement Method Based on Retinex (Retinex 처리에 기반한 적외선 열상 이미지의 화질 개선)

  • Lee, Won-Seok;Kim, Kyoung-Hee;Lee, Sang-Won
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.32-39
    • /
    • 2011
  • The output image of the uncooled thermal infrared camera is difficult the identification of target because of the limited dynamic range and the various noises. Retinex algorithm based on the theory of the human visual perception is known to be effective contrast enhancement technique. However, the image quality is insufficient when it is adopted to the narrow dynamic range image as the infrared image. In this paper, we propose the revised retinex algorithm to enhance the contrast of the infrared image. To improve the contrast enhancement performance, we designed the new dynamic range compression function instead of log function. To reduce the noise and compensate the loss of edge, we added the contrast compensation procedure in the MSR image generation process. According to the output picture comparing and numerical analysis, the proposed algorithm shows the better contrast enhancement performance and the more suitable method for the infrared image enhancement.

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.