• Title/Summary/Keyword: infrared galaxies

Search Result 258, Processing Time 0.021 seconds

STAR FORMATION RATE CALIBRATIONS FOR WISE LUMINOSITIES

  • Yuan, F.T.;Takeuchi, T.T;Buat, V.;Burgarella, D.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.345-346
    • /
    • 2012
  • Starting from an infrared selected GALEX-SDSS-2MASS-AKARI sample of local star forming galaxies, we built mock samples from redshift 0 to 2.5 to investigate star formation rate (SFR) calibrations using WISE luminosities. We find W3 and W4 band fluxes can indicate SFRs with small scatters when the rest-frame wavelengths are longer than ${\sim}6{\mu}m$. When the wavelength becomes shorter, the observed luminosities are more tightly connected to the emission of old stellar populations than dust, therefore lose the reliability to trace the SFR. The current SFR calibrations are consistent with previous studies.

STUDY OF SPECTRAL ENERGY DISTRIBUTION OF GALAXIES WITH PRINCIPAL COMPONENT ANALYSIS

  • Kochi, Chihiro;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Yano, Kenichi;Baba, Shunsuke
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.209-211
    • /
    • 2017
  • We performed Principle Component Analysis (PCA) over 264 galaxies in the IRAS Revised Bright Galaxy Sample (Sanders et al., 2003) using 12, 25, 60 and $100{\mu}m$ flux data observed by IRAS and 9, 18, 65, 90 and $140{\mu}m$ flux data observed by AKARI. We found that (i)the first principle component was largely contributed by infrared to visible flux ratio, (ii)the second principal component was largely contributed by the flux ratio between IRAS and AKARI, (iii)the third principle component was largely contributed by infrared colors.

AKARI Near-Infrared Spectroscopy of Blue Early-type Galaxies

  • 이준협;황호성;이명균;이종철
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The first near-infrared (NIR) spectroscopic survey of SDSS-selected blue early-type galaxies (BEGs) has been conducted using the AKARI/IRC. The NIR spectra of 36 BEGs are successfully secured, which are well balanced in their SF/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the 3.3 micron PAH emission equivalent width in the stacked BEG spectra, and compare them with those of SSP model galaxies and known ULIRGs. We first report the NIR spectral features of BEGs and discuss the nature of BEGs based on the comparison with other objects.

  • PDF

A New Galaxy Classification Scheme in the WISE Color-Luminosity Diagram

  • Lee, Gwang-Ho;Sohn, Jubee;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.49.1-49.1
    • /
    • 2013
  • We present a new galaxy classification scheme in the Wide-field Infrared Survey Explorer (WISE) [$3.4{\mu}m$]-[$12{\mu}m$] color versus $12{\mu}m$ luminosity diagram. In this diagram, galaxies can be classified into three groups in different evolutionary stages. Late-type galaxies are distributed linearly along "MIR star-forming sequence" identified by Hwang et al. (2012). Some early-type galaxies show another sequence at [3.4]-[12] $(AB){\simeq}-2.0$, and we call this 'MIR blue sequence'. They are quiescent systems with old stellar population older than 10 Gyr. Between the MIR star-forming sequence and the MIR blue sequence, some early- and late-type galaxies are sparsely distributed, and we call these galaxies 'MIR green cloud galaxies'. Interestingly, both MIR blue sequence galaxies and MIR green cloud ones lie on the red sequence in the optical color-magnitude diagram. However, MIR green cloud galaxies have lower stellar masses and younger stellar populations (smaller $D_n4000$) than MIR blue sequence galaxies, suggesting that MIR green cloud galaxies are in the transition stage from MIR star-forming sequence galaxies to MIR blue sequence ones. We present differences in various galaxy properties between the three MIR classes using a multi-wavelength data, combined with the WISE and Sloan Digital Sky Survey Data Release 10, of local (0.03 < z < 0.07) galaxies.

  • PDF

Specific star formation rate of the MIR-selected galaxies in AKARI NEP-Wide

  • 이동섭;심현진
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.60.1-60.1
    • /
    • 2018
  • We investigate the $SFR-M_{\star}$ relation of the infrared luminous galaxies selected in either $11{\mu}m$ and $15{\mu}m$ from the $5.6deg^2$ of the AKARI NEP-Wide field. From the constructed multi-wavelength catalog spanning $0.3{\mu}m$ to $24{\mu}m$, we select 3,408 S11 > $50{\mu}Jy$ galaxies and 1,896 L15 > $20{\mu}Jy$ galaxies which corresponds to $L_{IR}{\sim}10^{11}L_{\odot}$ at z ~ 0.5 and 0.7 respectively. Photometric redshifts of the selected galaxies were derived using LePHARE and Coleman Extended templates. ~98% S11 selected galaxies are galaxies with (median redshift) ~ 0.4, and ~96% L15 selected galaxies are galaxies with ~ 0.6. Star formation rates and stellar mass of these galaxies were calculated using MAGPHYS which derives physical parameters with SED fitting. In the SFR-$M_{\star}$ diagram, $11{\mu}m/15{\mu}m$ selected galaxies are located in the main sequence of star-forming galaxies at z ~ 1.

  • PDF

New candidates of 1 < z < 2 galaxy clusters in 13.6 $deg^2$ of ELAIS-N1/N2 fields with a new colour-colour selection technique

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.50.2-50.2
    • /
    • 2013
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly at high redshfit (Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012), and evolution of galaxies in cluster has not been fully understood. Finding galaxy cluster candidates at z > 1 in wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidates of galaxy clusters in the wide and deep survey fields, European Large Area ISO Survey North1(ELAIS-N1) and North2(ELAIS-N2) fields, covering sky area of $8.75deg^2$ and $4.85deg^2$ each. We also suggest a new useful colour-colour selection technique to separate 1 < z < 2 galaxies from low-z galaxies by combining multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS, JK bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE, Optical-Infrared bands), Canada France Hawaii Telescope (CFHT, z band) and Infrared Medium-deep Survey(IMS, J band).

  • PDF

High redshift galaxy clusters in ELAIS-N1/N2 fields with a new color selection technique

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.48.1-48.1
    • /
    • 2014
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly(Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012) and evolution of galaxies in cluster have been still controversial (Elbaz et al. 2007, Cooper et al. 2008, Tran et al. 2009). Finding galaxy cluster candidates at z>1 in a wide, deep imaging survey data will enable us to solve the such issues of modern extragalactic astronomy. We report new candidates of galaxy clusters and their physical properties in one of the wide and deep survey fields, European Large Area ISO Survey North1(ELAIS-N1) and North2(ELAIS-N2) fields, covering sky area of and each. We also suggest a new useful color selection technique to separate 1 < z < 2 galaxies from low-z galaxies by combining multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS/J and K band), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE/two mid-infrared bands), Canada France Hawaii Telescope (CFHT/z band), Issac Newton Telescope(INT/ u, g, r, i, z band) and Infrared Medium-deep Survey(IMS/J band).

  • PDF

BRACKETT LINE-BASED MBH ESTIMATORS AND HOT DUST TEMPERATURES OF TYPE 1 AGNs FROM AKARI SPECTROSCOPIC DATA

  • KIM, DOHYEONG;IM, MYUNGSHIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.443-445
    • /
    • 2015
  • We provide results of near-infrared (NIR) spectroscopic observations of 83 nearby (0.002< z <0.48) and bright (K <14 mag) type 1 active galactic nuclei (AGNs). For the observations, we used the Infrared Camera (IRC) on AKARI allowing us to obtain the spectrum in the rarely studied spectral range of $2.5-5.0{\mu}m$. The $2.5-5.0{\mu}m$ spectral region suffers less dust extinction than ultra violet (UV) or optical wavelength ranges, and contains several important emission lines such as $Br{\beta}$ ($2.63{\mu}m$), $Br{\alpha}$ ($4.05{\mu}m$), and polycyclic aromatic hydrocarbon (PAH; $3.3{\mu}m$). The sample is selected from the bright quasar surveys of Palomar Green and SNUQSO, and AGNs with black hole (BH) masses estimated from reverberation mapping method. We measure the Brackett line properties for 11 AGNs, which enable us to derive BH mass estimators and investigate circum-nuclear environments. Moreover, we perform spectral modeling to fit the hot and warm dust components by adding photometric data from SDSS, 2MASS, WISE, and ISO to the AKARI spectra, and estimate hot and warm dust temperatures of ~1100K and ~220 K, respectively.

PROCESSING OF INTERSTELLAR DUST GRAINS IN GALAXIES

  • Kaneda, H.;Ishihara, D.;Onaka, T.;Sakon, I.;Suzuki, T.;Kobata, K.;Kondo, T.;Yamagishi, M.;Yasuda, A.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.237-242
    • /
    • 2012
  • We have performed a systematic study of interstellar dust grains in various environments of galaxies. AKARI has revealed the detailed properties of dust grains not only in star-forming regions but also in regions not relevant to star formation, some of which are found not to follow our old empirical knowledge. Because of its unique capabilities, AKARI has provided new knowledge on the processing of large grains and polycyclic aromatic hydrocarbons (PAHs). For example, we detect PAHs from elliptical galaxies, which show unusual spectral features and spatial distributions, demonstrating importance of material processing in the interstellar space. We find that copious amounts of large grains and PAHs are flowing out of starburst galaxies by galactic superwinds, which are being shattered and destroyed in galactic haloes. We discover evidence for graphitization of carbonaceous grains near the center of our Galaxy, providing a clue to understanding the activity of the Galactic center. We review the results obtained from our AKARI program, focusing on the processing of carbonaceous grains in various environments of galaxies.

A Gemini/GMOS-IFU Spectroscopy of E+A Galaxies in the Mid-infrared Green Valley: On the Spatial Distribution of Young Stellar Population

  • Lee, Gwang-Ho;Lee, Myung Gyoon;Bae, Hyunjin;Sohn, Jubee;Ko, Youkyung;Lee, Jaehyung;Kim, Eunchong;Cho, Brian S.
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.63.3-63.3
    • /
    • 2016
  • We present the two-dimensional distribution of stellar populations in five E+A galaxies from GMOS-N/IFU spectroscopy (GN-2015B-Q-15). Numerical simulations demonstrated that E+A galaxies formed by major mergers contain young stellar populations (e.g. A-type stars) that are centrally-concentrated within scales of 1 kpc. However, several IFU studies reported that A-type stars are widely distributed on ${\gg}$ 1kpc scales. In contrast, Pracy et al. (2013) found a central concentration of A-stars and strong negative Balmer absorption line gradients within 1 kpc scales for local (z < 0.03) E+A galaxies. They claimed that previous studies failed to detect the central concentration because the E+A galaxy samples in previous studies are too far (z ~ 0.1) to resolve the central kpc scales. To verify Pracy et al.'s argument and the expectation from simulations, we selected five E+A galaxies at 0.03 < z < 0.05. Furthermore, we selected the targets in the mid-infrared green valley (Lee et al. 2015). Thanks to good seeing (${\sim}0.4^{{\prime}{\prime}}{\simeq}0.33kpc$) of our observation, we are able to resolve the central 1 kpc region of our targets. We found that all five galaxies have negative Balmer line gradients, but that three galaxies have flatter gradients than those reported in Pracy et al. We discuss the results in relation with galaxy merger history.

  • PDF