• Title/Summary/Keyword: infrared: telescope

Search Result 262, Processing Time 0.022 seconds

Subaru-EAO international partnership

  • Yoshida, Michitoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.59.1-59.1
    • /
    • 2017
  • The Subaru telescope is a 8.2m optical-infrared telescope operated by National Astronomical Observatory of Japan since 2000. Its wide field observation capability with good image quality makes the telescope one of the best astronomical facilities. We Subaru Telescope is seeking for international partners for the telescope operation to share science observations, future strategy and development. In the course of this effort, EAO and us exchanged a letter of intent on the planning of collaboration on the Subaru operation in this June. I introduce the contents of the Subaru-EAO LOI and the basic concepts of the Subaru international partnership in addition to a brief report of the current status of the observatory.

  • PDF

IGRINS and the Revolution in High Resolution Infrared Spectroscopy

  • Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.41.4-42
    • /
    • 2015
  • The Immersion Grating Infrared Spectrograph (IGRINS) is the first of a new generation of infrared instruments with high sensitivity, high spectral resolution, and broad spectral grasp. IGRINS, a joint project of the University of Texas and the Korea Astronomy and Space Science Institute, designed and constructed by a team at UT, KASI, and Kyung Hee University, has been available to the Korean and Texas communities on the McDonald Observatory 2.7m telescope since 2014 September. On this modest-sized telescope, the instrument has 30 times the spectral grasp of CRIRES at the 8m VLT and is only slightly less sensitive. Already, Korean and UT astronomers have produced a raft of new results in star formation studies, investigations of the interstellar medium, and the nature of cool stars. Several programs are under way to detect and study the atmospheres of exoplanets. We will present highlights from the first 6 months of IGRINS operations and look at the future of IR spectroscopy both with IGRINS and with GMTNIRS, a UT/KASI/KHU instrument for the Giant Magellan Telescope.

  • PDF

Performance Analysis for Mirrors of 30 cm Cryogenic Space Infrared Telescope

  • Park, Kwi-Jong;Moon, Bong-Kon;Lee, Dae-Hee;Jeong, Woong-Seob;Nam, Uk-Won;Park, Young-Sik;Pyo, Jeong-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.321-328
    • /
    • 2012
  • We have designed a 30 cm cryogenic space infrared telescope for astronomical observation. The telescope is designed to observe in the wavelength range of 0.5~2.1 ${\mu}m$, when it is cooled down to 77 K. The result of the preliminary design of the support structure and support method of the mirror of a 30 cm cryogenic space infrared telescope is shown in this paper. As a Cassegrain prescription, the optical system of a 30 cm cryogenic space infrared telescope has a focal ratio of f/3.1 with a 300 mm primary mirror (M-1) and 113 mm secondary mirror (M-2). The material of the whole structure including mirrors is aluminum alloy (Al6061-T6). Flexures that can withstand random vibration were designed, and it was validated through opto-mechanical analysis that both primary and secondary mirrors, which are assembled in the support structure, meet the requirement of root mean square wavefront error < ${\lambda}/8$ for all gravity direction. Additionally, when the M-1 and flexures are assembled by bolts, the effect of thermal stress occurring from a stainless steel bolt when cooled and bolt torque on the M-1 was analyzed.

LEGACY OF THE SPICA CORONAGRAPH INSTRUMENT (SCI): TOWARD EXOPLANETARY SCIENCE WITH SPACE INFRARED TELESCOPES IN THE FUTURE

  • Enya, Keigo
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.347-349
    • /
    • 2017
  • This paper reviews the legacy of the SPCIA Coronagraph Instrument (SCI) of which the primary scientific objective is the characterization of Jovian exoplanets by coronagraphic spectroscopy in the infrared. Studies on binary shaped pupil mask coronagraphs are described. Cryogenic active optics is discussed as another key technology. Then approaches to observing habitable zones in exoplanetary systems with a passively-cooled space infrared telescope are discussed. The SCI was dropped in a drastic change of the SPICA mission. However, its legacy is useful for space-borne infrared telescopes dedicated for use in exoplanetary science in the future, especially for studies of biomarkers.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Analysis of Center Finding Algorithms for Telescope Autoguiding System

  • Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Kang, Wonseok;Chun, Moo-Young;Jeong, Ueejeong;Yuk, In-Soo;Kim, Kangmin;Park, Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.85.2-85.2
    • /
    • 2013
  • We developed autoguiding system for IGRINS (Immersion Grating Infrared Spectrograph) which is a high resolution near-IR spectrograph. This instrument will be attached on the 2.7m telescope at the McDonald observatory in 2013 November. IGRINS consists of three near-Infrared detector modules, i. e., H and K band spectrograph modules and a K band slit camera module, within which we are using the slit camera for autoguiding of the telescope. Comparing to typical optical CCDs, however, the infrared array shows non-uniform responses, higher noises, and many bad pixels. In this poster, we present methods to improve center finding functions and algorithms for the infrared array and the simulator test results of the IGRINS Slit-Camera Package.

  • PDF

The United Kingdom Infrared Telescope (UKIRT)

  • Davis, Gary
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Over its 30-year lifetime, UKIRT has been the world's leading telescope devoted exclusively to observations in the infrared. Its outstanding success over this period is attributable to a number of factors, foremost among which are the size (3.6m) and high quality of the mirror, the excellent site at the summit of Mauna Kea, and the deployment of unique, world-beating instrumentation. In recent years, as the UK has re-directed its investment in astronomical facilities towards ESO, UKIRT has focussed on wide-field imaging in the near infrared, and we are currently conducting a definitive programme known as the UKIRT Infrared Deep Sky Survey (UKIDSS). In this presentation I will describe UKIRT's current capabilities, its evolving operation, opportunities for Korean participation, and possibilities for its future development.

  • PDF

MID- AND FAR-INFRARED PROPERTIES OF LOCAL ACTIVE GALACTIC NUCLEI

  • Ichikawa, Kohei;Ueda, Yoshihiro;Terashima, Yuichi;Oyabu, Shinki;Gandhi, Poshak;Matsuta, Keiko;Nakagawa, Takao
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • We investigate the mid-infrared (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the infrared survey catalogs of AKARI, IRAS and WISE. Out of 135 non-blazar AGNs in the Swift/BAT 9-month catalog, we obtain the MIR photometric data for 128 sources in either the 9, 12, 18, 22, and $25{\mu}m$ band. We find a good correlation between their hard X-ray and MIR luminosities ranging three orders of magnitude (42 < log ${\lambda}L_{\lambda}$(9, $18{\mu}m$) < 45), which is tighter than that with the FIR luminosities at $90{\mu}m$. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori models rather than homogeneous ones.

The Role of SPICA/FPC in the SPICA System

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Dae-Hee;Pyo, Jeong-Hyun;Park, Sung-Joon;Moon, Bong-Kon;Ree, Chang-Hee;Park, Young-Sik;Han, Won-Yong;Lee, Hyung-Mok;Im, Myung-Shin;SPICA/FPC Team, SPICA/FPC Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2012
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. It will achieve the high resolution as well as the unprecedented sensitivity from mid to far-infrared range. The FPC (Focal Plane Camera) is a Korean-led near-infrared instrument as an international collaboration. The FPC-S and FPC-G are responsible for the scientific observation in the near-infrared and the fine guiding, respectively. The FPC-G will significantly reduce the alignement and random pointing error through the observation of guiding stars in the focal plane. We analyzed the pointing requirement from the focal plane instruments. The feasibility study was performed to achieve the requirements. Here, we present the role of SPICA/FPC as a fine guiding camera.

  • PDF

17P/Holmes: Contrast between before and after the 2007 outburst

  • Ishiguro, Masateru;Ham, Ji-Beom;Kim, Junhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.106.2-106.2
    • /
    • 2012
  • A Jupiter-family comet, 17P/Holmes, underwent an outburst on 2007 October 23. Since there has been no more dramatic comet outburst than the 17P/Holmes event in the history of modern astronomical observations, active observations were made soon after the outburst. However, little is known about the activity before the outburst because of the accidental event. In addition, since the nucleus has been veiled by the thick dust cloud by the 2007 outburst, the physical status of the nucleus was unknown. In this presentation, we investigated the contrast between before and after the outburst through the imaging observations in both optical and mid-infrared wavelengths. We thus analyzed data taken by Akari infrared telescope, Subaru 8-m telescope, University of Hawaii 2.2-m telescope and Nishi-Harima Astronomical Observatory 2-m Nayuta telescope. As the result, we found that the nucleus was significantly activated through the outburst. The surface fractional active area was 0.3% in the pre-outburst data while 10% in the past-outburst data. We expect that 17P/Holmes shows strenuous activity in the next return in 2013-2014.

  • PDF