• Title/Summary/Keyword: infrared: survey

Search Result 290, Processing Time 0.025 seconds

Survey of Globular Clusters with the AKARI FIS for the Intracluster Dusts

  • Pyo, Jeong-Hyun;Jeong, Woong-Seob;Kim, Eun-Hyeok;Lee, Myung-Gyoon;Hong, Seung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2010
  • In search of the intracluster dusts, we have made a survey of globular clusters (GCs) with the Far-Infrared Surveyor (FIS) aboard AKARI, the Japanese infrared space satellite. The GCs are thought to host dust particles that are condensed from the material injected by the cluster asymptotic giant branch (AGB) stars. However, attempts to detect dust emission from GCs had not been successful until a significant amount of far-infrared (FIR) emission was detected close to the NGC 7078 center by the ISO observations (Evans et al. 2003). Recent FIR observations by the AKARI (Matsunaga et al. 2008) and the Spitzer Space Telescope (Boyer et al. 2006; Barmpy et al. 2009) reported a tentative detection of the dusts in NGC 5024 and NGC 6341, and also confirmed the previous ISO dust detection from NGC 7078. We have observed 17 selected GCs in four FIS wavebands at 65, 90, 140, and 160 micrometers. Each observation covers about $10'{\times}10'$ area centered at each GC. The resulting images show extended structures and/or blobs around the GCs. The extended structures are very suggestive of the Galactic cirrus, while the blobs around NGC 288 and NGC 4833 seem to be related to the two clusters. In this presentation, we will report four representative cases of our survey results and discuss the properties of newly detected sources.

  • PDF

The near infrared image of GRB100205A field

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2012
  • GRB100205A is a Gamma Ray Burst (GRB) which is suspected to be at redshift z=11-13 due to its very red H-K color($(H-K)_{vega}=2.1{\pm}0.5$). We observed a field centered at GRB100205A with Wide Field Camera (WFCAM) at United Kingdom Infrared Telescope (UKIRT) in Hawaii, in order to search a quasar that could be located around the GRB. The images were obtained in J, H, and K filters covering a square area of $0.78deg^2$. Our J-, H-, and K-band data reach the depths of 22.5, 22.1, and 21.0 mag (Vega) at $5{\sigma}$, respectively. Also using z-band image observed by CFHT, we find 8 candidates that have colors consistent with a quasar at z=11-13(non-detection in z-, J-band and $(H-K)_{vega}$ > 1.6). However, the shallow depths of J-, H-band are not enough to verify their true nature. Instead, we identify many red objects to be old or dusty galaxies at $z{\geq}3$. The number density of such objects appears about twice or more than that of the field of Cosmological Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) of UKIRT Infrared deep sky survey (UKIDSS). On scales between 0.18' and 15' the correlation function is well described by a power law with an exponent of ${\approx}-0.9$ and this implies that those objects are like galaxies. It is interesting that many red galaxies exist in the region where the GRB was detected.

  • PDF

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • Kim, Du-Ho;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 281 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. The sample contains 222 relaxed ETGs, 38 ETGs with tidal features, 10 galaxies with dust features and 11 galaxies with tidal and dust features, and Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We find that r-K color gradients of field sample galaxies are steeper than those of sample ETGs within cluster environments. For the field sample galaxies, a relatively large number of galaxies with peculiar features contribute to the steeper color gradients, while the absence of these peculiar early-type galaxies make color gradients of the cluster sample galaxies intact. In high density environment, ETGs are already evolved and relaxed, resulting flat color gradients. However, in low density environments, a majority of ETGs undergone merging recently which makes the color gradients steep.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF

SMALL-SCALE STRUCTURE OF THE ZODIACAL DUST CLOUD OBSERVED IN FAR-INFRARED WITH AKARI

  • Ootsubo, Takafumi;Doi, Yasuo;Takita, Satoshi;Matsuura, Shuji;Kawada, Mitsunobu;Nakagawa, Takao;Arimatsu, Ko;Tanaka, Masahiro;Kondo, Toru;Ishihara, Daisuke;Usui, Fumihiko;Hattori, Makoto
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2017
  • The zodiacal light emission is the thermal emission from the interplanetary dust and the dominant diffuse radiation in the mid- to far-infrared wavelength region. Even in the far-infrared, the contribution of the zodiacal emission is not negligible at the region near the ecliptic plane. The AKARI far-infrared all-sky survey covered 97% of the whole sky in four photometric bands with band central wavelengths of 65, 90, 140, and $160{\mu}m$. AKARI detected the small-scale structure of the zodiacal dust cloud, such as the asteroidal dust bands and the circumsolar ring, in far-infrared wavelength region. Although the most part of the zodiacal light structure in the AKARI far-infrared all-sky image can be well reproduced with the DIRBE zodiacal light model, there are discrepancies in the small-scale structures. In particular, the intensity and the ecliptic latitude of the peak position of the asteroidal dust bands cannot be reproduced precisely with the DIRBE models. The AKARI observational data during more than one year has advantages over the 10-month DIRBE data in modeling the full-sky zodiacal dust cloud. The resulting small-scale zodiacal light structure template has been used to subtract the zodiacal light from the AKARI all-sky maps.

SED DECOMPOSITION OF INFRARED-LUMINOUS GALAXIES

  • Lee, Jong Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.291-292
    • /
    • 2012
  • We select infrared-luminous galaxies by cross-matching the SDSS spectroscopic sample of galaxies with the WISE all-sky survey catalog. Based on photometric data points covering from SDSS u-band to WISE $22{\mu}m$, their spectral energy distributions (SEDs) are separated into AGN, elliptical, spiral, and irregular galaxy components. The derived luminosities of spiral galaxy and AGN are well correlated with $H{\alpha}$ and [OIII] line luminosities, respectively. Most galaxies are dominated by young stellar populations even for optical AGNs, but at least 10% of optical non-AGNs appear to harbor buried AGNs. The AGN contribution increases dramatically with the total luminosity. These results show that the SED decomposition is successful and is useful to understand the true nature of dusty galaxies.

SIZE AND ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE COMPARATIVE STUDY OF INFRARED ASTEROID SURVEYS: IRAS, AKARI, AND WISE

  • Usui, Fumihiko;Hasegawa, Sunao;Ishiguro, Masateru;Muller, Thomas G.;Ootsubo, Takafumi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.55-57
    • /
    • 2017
  • Presently, the number of known asteroids is more than 710,000. Knowledge of size and albedo is essential in many aspects of asteroid research, such as the chemical composition and mineralogy, the size-frequency distribution of dynamical families, and the relationship between small bodies in the outer solar system or comets. Recently, based on the infrared all-sky survey data obtained by IRAS, AKARI, and WISE, the large asteroid catalogs containing size and albedo data have been constructed. In this paper, we discuss the compositional distribution in the main belt regions based on the compiled data on size, albedo, and separately obtained taxonomic type information.

THE RADIO-FAR INFRARED CORRELATION IN THE NEP DEEP FIELD

  • Barrufet, Laia;White, Glenn J.;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Oi, Nagisa;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.267-269
    • /
    • 2017
  • We report the results of a multi-wavelength study in the North Ecliptic Pole (NEP) deep field and examine the far infrared-radio correlation (FIRC) for high and low redshift objects. We have found a correlation between the GMRT data at 610 MHz and the Herschel data at $250{\mu}m$ that has been used to define a spectral index. This spectral index shows no evolution against redshift. As a result of the study, we show a radio colour-infrared diagram that can be used as a redshift indicator.

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.