• Title/Summary/Keyword: infrared: interstellar

Search Result 68, Processing Time 0.025 seconds

A SYSTEMATIC STUDY OF DUST IN EARLY-TYPE GALAXIES WITH AKARI

  • Kokusho, Takuma;Kaneda, Hidehiro;Kondo, Toru;Oyabu, Shinki;Yamagishi, Mitsuyoshi;Murata, Katsuhiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.151-153
    • /
    • 2017
  • Early-type galaxies (ETGs) are generally dominated by old low-mass stars, which are not very productive of dust, and hot interstellar plasmas, which are very destructive of dust. Thus ETGs provide harsh environments for survival of dust. It has been found that some ETGs contain a large amount of dust, and yet its supply mechanism is not understood well. We present the result of a systematic study of dust in ETGs with the AKARI mid- and far-infrared all-sky surveys. From the AKARI result and the Ks band data obtained by ground-based telescopes, we find that there is a global correlation between the dust mass and stellar luminosity. We also compare the AKARI all-sky survey result with the CO data to discuss origins of dust in ETGs.

2MASS NEAR-IR COLOR-MAGNITUDE DIAGRAM OF THE OLD OPEN CLUSTER KING 11

  • Kyeong, Jae-Mann;Moon, Hong-Kyu;Kim, Sang-Chul;Sung, Eon-Chang
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • We study near-infrared properties of the old open cluster King 11, based on the 2MASS photometric data. We determine the location of the red giant clump(RGC) in the (K, J - K) colo-magnitude diagram and derive the distance modulus of King 11 to be $(m-M)_0$ = $12.50{\pm}0.10$ using the mean K magnitude of RGC. From the red giant branch slope - [Fe/H] relation we obtain the metallicity of this cluster, [Fe/H]=$-0.17{\pm}0.07$. The age and interstellar reddening of this cluster are estimated to be log t = $9.48{\pm}0.05$, E(B-V)=$0.90{\pm}0.03$, by applying Padova isochrone fits to the data.

RECENT PROGRESS IN HIGH-MASS STAR-FORMATION STUDIES WITH ALMA

  • Hirota, Tomoya
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.21-30
    • /
    • 2018
  • Formation processes of high-mass stars have been long-standing issues in astronomy and astrophysics. This is mainly because of major difficulties in observational studies such as a smaller number of high-mass young stellar objects (YSOs), larger distances, and more complex structures in young high-mass clusters compared with nearby low-mass isolated star-forming regions (SFRs), and extremely large opacity of interstellar dust except for centimeter to submillimeter wavelengths. High resolution and high sensitivity observations with Atacama Large Millimeter/Submillimeter Array (ALMA) at millimeter/submillimeter wavelengths will overcome these observational difficulties even for statistical studies with increasing number of high-mass YSO samples. This review will summarize recent progresses in high-mass star-formation studies with ALMA such as clumps and filaments in giant molecular cloud complexes and infrared dark clouds (IRDCs), protostellar disks and outflows in dense cores, chemistry, masers, and accretion bursts in high-mass SFRs.

MAXIMUM POWER ENTROPY METHOD FOR LOW CONTRAST IMAGES

  • CHAE JONG-CHUL;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 1994
  • We propose to use the entropy of power spectra defined in the frequency domain for the deconvolution of extended images. Spatial correlations requisite for extended sources may be insured by increasing the role of power entropy because the power is just a representation of spatial correlations in the frequency domain. We have derived a semi-analytical solution which is found to severely reduce computing time compared with other iteration schemes. Even though the solution is very similar to the well-known Wiener filter, the regularizingng term in the new expression is so insensitive to the noise characteristics as to assure a stable solution. Applications have been made to the IRAS $60{\mu}m\;and\;100{\mu}m$ images of the dark cloud B34 and the optical CCD image of a solar active region containing a circular sunspot and a small pore.

  • PDF

Phosphorus in the Young Supernova Remnant Cassiopeia A

  • Koo, Bon-Chul;Lee, Yong-Hyun;Moon, Dae-Sik;Yoon, Sung-Chul;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2014
  • Phosphorus ($^{31}P$), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}Fe$) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.

  • PDF

Cosmic Evolution of Submillimeter Galaxies and Their Effects on the Star Formation Rate Density

  • Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.27-27
    • /
    • 2013
  • Development of bolometer array and camera at millimeter and submillimeter wavelengths plays an important role for detecting submillimeter galaxies (SMGs) which appear to be very bright at the submillimeter and millimeter wavelengths. These SMGs, luminous infrared galaxies detected at mm/submm wavelengths seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates (SFRs) if there is a close link between the SMG phenomena and the star formation activities and the interstellar dust in galaxies is mainly heated by the star light. In this talk, we review assembly of SMGs compiled with observations using the bolometer arrays and cameras and investigate their spectral energy distribution fits including the data at other wavelengths which trace the photometric properties and the red-shift distribution of galaxies. We find that these bright SMGs significantly contribute to the cosmic star formation rate density at red-shifts of 2-3 (about 8 %) for the spatial distribution of these galaxies.

  • PDF

The Galactic Center: Not an Active Galactic Nucleus

  • An, Deokkeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.58.1-58.1
    • /
    • 2013
  • We present $10{\mu}m-35{\mu}m$ Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc ${\times}$ 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and $H_2$ emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and $H_2$ suggest that most of the $H_2$ 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey (SINGS) to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from LINERs and AGNs. Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  • PDF

Dust Scattering in Turbulent Media: Correlation between the Scattered Light and Dust Column Density

  • Seon, Kwang-Il;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  • PDF

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.