• Title/Summary/Keyword: infrared: galaxy, luminosity function

Search Result 11, Processing Time 0.025 seconds

우리 은하의 적외선 모형 II

  • Gang, Yong-Hui
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.231-253
    • /
    • 1992
  • A model for the distribution of stars in the disk and the spheroid of our Galaxy is reexamined from an edge-on view of the Galaxy obtained by selecting infrared sources from the IRAS Point Source Catalog. The sources are counted as a function of galactic latitude. longitude and $12{\mu}m$ apparent magnitude. The source counts are reasonably separated into the disk component and the spheroid component contributions and each of the contributions is further interpreted as a convolution of a spatial density distribution and a luminosity function based on the least-square fit method. The spatial density of the disk component has an exponential radial scale length of $h_R{\sim}2.6\;kpc$ and the vertical distribution follows a canonical $sech^2$ law with a scale height $h_z{\sim}240\;pc$. The distribution of the spheroid component can be represented by an oblate spheriod with an axis ratio $k{\sim}0.61$ and a de Vaucouleurs' $r^{1/4}$ law with an effective radius of $R_e{\sim}120\;pc$. The steep density gradient of the spheroid component is consistent with that of late M giants in the central bulge. The luminosity functions of the disk and the spheroid component stars resemble respectively those of the K luminosity function of disk M giants (Garwood and Jones 1986) and the bolometric luminosity function of M giants in bulge fields (Frogel et al, 1990).

  • PDF

SUSTAINING GALAXY EVOLUTION: THE ROLE OF STELLAR FEEDBACK

  • JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.355-358
    • /
    • 2015
  • We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group galaxy M33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The pulsating giant stars (AGB and red supergiants) are identified and their distributions are used to derive the star formation rate as a function of age. These stars are also important dust factories; we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass-loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. Low-mass stars lose most of their mass through stellar winds, but even super-AGB stars and red superginats lose ~40% of their mass via a dusty stellar wind. We construct a 2-D map of the mass-return rate, showing a radial decline but also local enhancements due to agglomerations of massive stars. By comparing the current star formation rate with total mass input to the ISM, we conclude that the star formation in the central regions of M33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions.

THE 18 ㎛ LUMINOSITY FUNCTION OF GALAXIES WITH AKARI

  • Toba, Yoshiki;Oyabu, Shinki;Matsuhara, Hideo;Ishihara, Daisuke;Malkan, Matt;Wada, Takehiko;Ohyama, Youichi;Kataza, Hirokazu;Takita, Satoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.335-338
    • /
    • 2012
  • We present the $18{\mu}m$ luminosity function (LF) of galaxies at 0.006 < z < 0.8 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected 243 galaxies at $18{\mu}m$ from the Sloan Digital Sky Survey (SDSS) spectroscopic region. These galaxies then have been classified into five types; Seyfert 1 galaxies (Sy1, including quasars), Seyfert 2 galaxies (Sy2), low ionization narrow emission line galaxies (LINER), galaxies that are likely to contain both star formation and Active Galactic Nuclei (AGN) activities (composites), and star forming galaxies (SF) using optical emission lines such as the line width of $H{\alpha}$ or the emission line ratios of [OIII]/$H{\beta}$ and [NII]/$H{\alpha}$. As a result of constructing the LF of Sy1 and Sy2, we found the following results; (i) the number density ratio of Sy2 to Sy1 is $1.64{\pm}0.37$, larger than the results obtained from optical LF and (ii) the fraction of Sy2 in the entire AGN population may decrease with $18{\mu}m$ luminosity. These results suggest that most of the AGNs in the local universe are obscured by dust and the torus structure probably depends on the mid-infrared luminosity.

PHOTOMETRIC STUDY OF IC 2156

  • TADROSS, A.L.;HENDY, Y.H.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.2
    • /
    • pp.53-57
    • /
    • 2016
  • We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

PROPERTIES OF DUST IN EARLY-TYPE GALAXIES BASED ON THE ALL-SKY-SURVEY DATA AND NEAR-INFRARED SPECTRA

  • Mori, T.;Oyabu, S.;Kaneda, H.;Ishihara, D.;Yamagishi, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.263-264
    • /
    • 2012
  • We present the properties of dust and the near-infrared spectral features in nearby early-type galaxies. The properties of dust are obtained from the AKARI far-infrared all-sky survey diffuse map. The AKARI/IRC is used for the near-infrared spectra. We improve spectral data with the new dark subtraction method on the basis of the knowledge acquired in our laboratory experiments of the engineering-model detector for the IRC. We have succeeded in fitting the continuum by a power-law function and detecting CO and SiO absorption features in early-type galaxy spectra. Comparing the properties of dust and near-infrared spectral features, we find that the power-law slope depends on dust temperature, but not on the dust mass, which suggests that low-luminosity AGNs may contribute to the changes in the power-law slope and dust temperature.

"Maintenance"-mode feedback and the host galaxies of radio-AGN

  • Karouzos, Marios;Im, Myungshin;Trichas, Markos
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2014
  • There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star-formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio-AGN below redshift z=2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modeling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while offering evidence supporting a "maintenance" type of feedback from powerful radio-jets.

  • PDF

A NEAR-INFRARED STUDY OF THE HIGHLY-OBSCURED ACTIVE STAR-FORMING REGION W51B

  • Kim, Hyo-Sun;Nakajima, Yasushi;Sung, Hwan-Kyung;Moon, Dae-Sik;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • We present wide-field $JHK_s$-band photometric observations of the three compact H II regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact H II regions show the excess number of stars in the $J-K_s$ histograms compared with reference fields. While the mean color excess ratio $(E_{J-H}/E_{H-K_s})$ of the three compact H II regions are similar to ${\sim}2.07$, the visual extinctions toward them are somewhat different: ${\sim}17$ mag for G48.9-0.3 and G49.0-0.3; ${\sim}23$ mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact H II region is ${\leq}2\;Myr$. The inferred total stellar mass, ${\sim}1.4{\times}10^4M_{\odot}$, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ${\sim}10%$.

Survey of Faint Quasar candidates at 4.7 ≤ z ≤ 5.2

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee;Park, Woojin;Ji, Tae-geun;Jeon, Yiseul;Kim, Minjin;Kim, Dohyeong;Kim, Jae-Woo;Taak, Yoon Chan;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.4-60
    • /
    • 2018
  • To investigate the impact of the high-redshift quasars on cosmic reionization, the faint end slope of the quasars luminosity function has to be determined precisely. More quasars with low luminosity are needed to constrain the contribution to reionization in the early universe. However, finding these quasars has been regarded as tough process owing to the improper shallow depth of imaging data. In recent days, the release data of Subaru Hyper Suprime-Cam (HSC) Strategic Program survey which provide the deep images reaching ~ 25 mag facilitates searching the faint quasars candidates. To find faint quasar candidates in ELAIS-N1 field, along with the HSC data, two near-infrared (NIR) data sets also be used : The Infrared Medium-deep Survey (IMS) and The UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep Extragalactic Survey (DXS). Quasar candidates selected from the multi-band color cut were observed by the SED camera for QUasars in EArly uNiverse (SQUEAN) instrument. To trace the redshifted Lyman break efficiently, appropriate medium bands comparable to targeted redshift range are chosen. The most reliable quasar candidates are finally determined through SED fitting. Using this less luminous quasars candidates, we can speculate the relation between the quasar growth and the host galaxy unbiasedly and estimate the contribution to the cosmic reionization.

  • PDF

A Deep Optical Photometric Study of the Massive Young Open Clusters in the Sagittarius-Carina Spiral Arm

  • Hur, Hyeonoh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • The Sagittarius-Carina spiral arm in the Galaxy contains several massive young open clusters. We present a deep optical photometric study on the massive young open clusters in the Sagittarius-Carina arm, Westerlund 2 and the young open clusters in the ${\eta}$ Carina nebula. Westerlund 2 is a less studied starburst-type cluster in the Galaxy. An abnormal reddening law for the intracluster medium of the young starburst-type cluster Westerlund 2 is determined to be $R_{V,cl}=4.14{\pm}0.08$. The distance modulus is determined from zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams of the early-type members to be $V_0-M_V=13.9{\pm}0.14mag$. The pre-main sequence (PMS) members of Westerlund 2 are selected by identifying the optical counterparts of X-ray emission sources from the Chandra X-ray observation and mid-infrared emission sources from the Spitzer/IRAC (the Infrared Array Camera) observation. The initial mass function (IMF) shows a slightly flat slope of ${\Gamma}=-1.1{\pm}0.1$ down to $5M_{\odot}$. The age of Westerlund 2 is estimated to be. 1.5 Myr from the main-sequence turn-on luminosity and the age distribution of PMS stars. The ${\eta}$ Carina nebula is the best laboratory for the investigation of the Galactic massive stars and low-mass star formation under the influence of numerous massive stars. We have performed deep wide-field CCD photometry of stars in the ${\eta}$ Carina nebula to determine the reddening law, distance, and the IMF of the clusters in the nebula. We present VRI and $H{\alpha}$ photometry of 130,571 stars from the images obtained with the 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). RV,cl in the η Carina nebula gradually decreases from the southern part (~4.5, around Trumpler 14 and Trumpler 16) to the northern part around Trumpler 15 (~3.5). Distance to the young open clusters in the ${\eta}$ Carina nebula is partly revised based on the zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams (CMDs) and the (semi-) reddening-independent CMDs. We select the PMS members and candidates by identifying the optical counterparts of X-ray sources from the Chandra Carina Complex Survey and mid-infrared excess emission stars from the Spitzer Vela-Carina survey. From the evolutionary stage of massive stars and PMS stars, we obtain that the northern young open cluster Trumpler 15 is distinctively older than the southern young open clusters, Trumpler 14 (${\leq}2.5 Myr$) and Trumpler 16 (2.5-3.5 Myr). The slopes of the IMF of Trumpler 14, Trumpler 15, and Trumpler 16 are determined to be $-1.2{\pm}0.1$, $-1.5{\pm}0.3$, and $-1.1{\pm}0.1$, respectively. Based on the RV,cl of several young open clusters determined in this work and the previous studies of our group, We suggest that higher RV,cl values are commonly found for very young open clusters with the age of < 4 Myr. We also confirm the correlation between the slope of the IMF and the surface mass density of massive stars.

  • PDF