The Journal of Economics, Marketing and Management
/
v.12
no.3
/
pp.23-33
/
2024
This study aims to enhance the accuracy of effective demand analysis for publicly supported private rental housing by integrating the RIR into the traditional Mankiw-Weil (MW) model. Traditional models like the M-W model, which account for household income, housing costs, and household size, often fall short in estimating demand driven by large-scale development projects. By integrating the RIR factor, this study introduces a more accurate and practical approach to analyzing effective housing demand. Findings show that the modified M-W model incorporating RIR predicts effective demand with greater precision than traditional methods. This advancement allows developers to plan projects more efficiently and aids governments and local authorities in implementing more effective housing policies. Furthermore, the study assesses the real housing cost burden on households, elucidating their capacity to pay housing costs based on household size and income quintile. This information enables policymakers to design targeted housing support policies for specific demographic groups. Additionally, the research provides comprehensive policy recommendations tailored to various regions and housing types. Overall, this study lays a vital groundwork for the long-term analysis of the effects of economic changes and housing market trends on effective demand.
Journal of the Korean Data and Information Science Society
/
v.27
no.6
/
pp.1547-1555
/
2016
The variability of exchange rate influences on the various aspect, especially economics, social phenomenon, industry, and culture of the country. In this article, time series model that won/yen exchange rate can be explained by won/dollar exchange rate has been studied. Daily exchange rate data have been used from January 1, 1999 to December 31, 2015. The daily data divided into two period based on the world financial crisis, September 13, 2008. The first period was January 1, 1999 through September 12, 2008 and the second period was October 1, 2008 through December 31, 2015. The AR+IGARCH (1, 1) model has been used for analyzing the variability of exchange rate. In both first period and second period, the estimation of won/yen exchange rate are somewhat underestimated compared with the actual value.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1471-1479
/
2017
The variability of trade price index of apartment influences on the various aspect, especially economics, social phenomenon, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly trading price index of apartment data. About 16 years of the monthly data have been used from September 2001 to May 2017. In the ARE model, six macroeconomic variables are used as the explanatory variables for the rade price index of apartment. The six explanatory variables are mortgage rate, oil import price index, consumer price index, KOSPI stock index, GDP, and GNI. The result has shown that trading price index of apartment explained about 76% by the mortgage rate, and KOSPI stock index.
Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
Journal of Information Processing Systems
/
v.15
no.6
/
pp.1306-1325
/
2019
As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.
Park, Sungik;Ryu, Jangsoo;Kim, Jonghan;Cho, Jangsik
Journal of the Korean Data and Information Science Society
/
v.26
no.2
/
pp.387-397
/
2015
In this paper, the determinants of the number of job changes in the SMEs (small and medium enterprises) youth-intern project is analysed, utilizing SMEs youth-intern DB and employment insurance DB. Since the number of job changes are count data which take integer values other than negative values, general linear regression analysis becomes inappropriate. Therefore, four models such as Poisson regression model, zero inflated Poisson regression model, negative binomial regression model and zero inflated negative binomial regression model are tried to fit count data. A zero inflated negative binomial regression model is selected to be the best model. Major results are the followings. First, the number of job changes is shown to be significantly smaller in the treatment group than in the control group. Second, the number of job changes turns out to be significantly smaller in the young-age group than in the old-age group. Third, it is also shown that the number of job changes of man is significantly greater than that of woman. Lastly, the number of job changes in the bigger firm is shown to be significantly less than that of the smaller firm.
This study found an interesting fact that the nonlinear relationship structure between volatility and trading volume changed before and after the COVID-19 pandemic according to empirical analysis using Bitcoin (BTC) market data that sensitively reflects investors' trading behavior. That is, their relationship appeared positive (+) in a stable market state before COVID-19 pandemic, as in theory based on the information flow paradigm. In a state under severe market stress due to COVID-19 pandemic, however, their dependence structure changed and even negative (-). This can be seen as a consequence of increased market stress caused by COVID-19 pandemics from a behavioral economics perspective, resulting in structural changes in the asset market and a significant impact on the nonlinear dependence of volatility and trading volume (in particular, their dependence at extreme quantiles). Hence, it should be recognized that in addition to information flows, psychological phenomena such as behavioral biases or herd behavior, which are closely related to market stress, can be a key in changing their dependence structure. For empirical analysis, this study performs a test of Ross (2015) for detecting a structural change, and proposes a Copula Regression Quantiles (CRQ) approach that can identify their nonlinear relationship structure and the asymmetric dependence in their distribution tails without the assumption of i.i.d. random variable. In addition, it was confirmed that when the relationship between their extreme values was analyzed by linear models, incorrect results could be derived due to model specification errors.
One of the basic assumptions of the regression models is that the parameter vector does not vary across sample observations. If the parameter vector is not constant for all observations in the sample, the statistical model is changed and the usual least squares estimators do not yield unbiased, consistent and efficient estimates. This study investigates the regression model with some or all parameters vary across partitions of the whole sample data when the model permits different response coefficients during unusual time periods. Since the usual test for overall homogeneity of regressions across partitions of the sample data does not explicitly identify the break points between the partitions, the testing the equality between subsets of coefficients in two or more linear regressions is generalized and combined with the test procedure to search the break point. The method is applied to find the possibility and the turning point of the structural change in the long-run unemployment rate in the usual static framework by using the regression model. The relationships between the variables included in the model are reexamined in the dynamic framework by using Vector Autoregression.
As information and communications technology (ICT) becomes increasingly integrated into the daily lives of people around the world, it is important to know how the technology is influencing the behaviors of individuals and families. This study looked at the ecology of families as it is related to ICT and the changes to processes that occur as ICT devices and services are integrated into the family. A survey of 1084 families was conducted. Five hundred of the families were from the United States and 584 families were from Korea. Significant differences were found in the use of ICT by Korean and American families although the source of this difference was not clearly identified in this study. Three clusters of families were identified based on their use of devices and services. These were labeled as; 'The Tech Savvy', 'The Wireless Users', 'The In-betweeners', 'The Wired', and 'The Just Mobile'. 'The Tech Savvy' used the greatest variety of ICT technologies and 'The Wired' used the fewest. Other clusters fell in the middle with families seemingly using the devices which met their particular needs. Two factors related to ICT integration into the family were identified. These were related to family intimacy and family relationship maintenance. The family cluster identified as 'Tech Savvy' made significantly greater use of ICT in these relationships and 'The Wired' made the least use of ICT in these areas. The other clusters tended to be between the two ends and tended not to be significantly different from each other in their use of ICT. Finally, models for ICT use by families showed that demographics, nation of origin, types of devices and services used, and attitude and interest in ICT all had a significant impact.
Korean agriculture has recently focused on the 6th dimension of industrialization, which includes the functions of healing and care. The green care and healing business is one of the most representative models, satisfying modern consumers' needs for care or healing in rural agricultural environments. Many studies have shown physical and social benefits from green care and healing, but studies regarding economic performance are rarely found. The present study aimed to analyze the economic feasibility of different green care and healing farm complexes proposed in recent domestic research, with various possible combinations of business scenarios. The results show that most of the scenarios are economically feasible as B/C (benefit-cost ratio) and IRR (internal rate of return) are 1.19 and 8.53%, respectively, under scenario 1. This study also performed a break-even analysis for providing more flexible decision-making information. Overall, scenario 1 from green care and healing site and scenario 4 from green care and healing cluster are found to be superior to the other scenarios in terms of B/C and IRR. The scenarios in this study reflect the domestic farms or complexes which have similar functions of care or healing. Therefore, the results of this study provide information on practical policies and business implications in making decisions on the specific size and operational patterns when adopting green care and healing complexes by central or local governments and private sectors in the future.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1739-1748
/
2021
Real estate prices affect countries, businesses, and households, and many studies have been conducted on the real estate bubble in recent soaring real estate prices. However, if the real estate bubble prediction simply compares the real estate price, or if it does not reflect key psychological variables in real estate sales, it can be judged that the accuracy of the bubble prediction model is poor. The purpose of this study is to design a predictive model that can explain the real estate bubble situation by region using the autoencoder technique. Existing real estate bubble analysis studies failed to set various types of variables that affect prices, and most of them were conducted based on linear models. Thus, this study suggests the possibility of introducing techniques and variables that have not been used in existing real estate bubble studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.