• 제목/요약/키워드: information cascade

검색결과 269건 처리시간 0.033초

Information Cascade and Share Market Volatility: A Chinese Perspective

  • Hong, Hui
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제3권4호
    • /
    • pp.17-24
    • /
    • 2016
  • The purpose of this paper is to understand the underlying dynamics for the share market bubbles in China during the most recent decade. By using the behavioral finance theory and the Shanghai Composite index prices during the periods from 2005 to 2008 and from 2014 to 2015 as the study samples, we find that the large volatilities in the Chinese share market are closely related to information blockage, which impedes share prices to timely respond to economic conditions as well as external shocks and increases (decreases) the demand of shares when the supply is difficult to adjust. Although the Chinese government has introduced a series of programs designed to increase more reliable information to the public, the share market still tends to confront issues of information asymmetry. The potential reason is that the reforms did not change the long-stand situation in China, where individuals or groups related to government bureaucracy who play a dominant role in the society are given priority to gain access and obtain information that benefits. By identifying the main reasons for the large volatilities in the market, policy makers are given advice as to which areas they may need to focus on to improve future market performance.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

변형된 캐스케이드-상관 학습 알고리즘을 적용한 그룹 고장 데이터의 소프트웨어 신뢰도 예측 (Software Reliability Prediction of Grouped Failure Data Using Variant Models of Cascade-Correlation Learning Algorithm)

  • 이상운;박중양
    • 정보처리학회논문지D
    • /
    • 제8D권4호
    • /
    • pp.387-392
    • /
    • 2001
  • 많은 소프트웨어 프로젝트는 시험이나 운영단계에서 고장시간이나 고장 수 데이타보다 그룹 고장 데이터(여러 고장 간격에서 또는 가변적인 시간 간격에서의 고장들)가 수집된다. 본 논문은 그룹 고장 데이터에 대해 가변적인 미래의 시간에서 누적 고장 수를 예측할 수 있는 신경망 모델을 제시한다. 2개의 변형된 캐스케이드-상관 학습 알고리즘을 제안하였다. 제안된 신경망 모델들은 다른 잘 알려진 신경망 모델과 통계적 소프트웨어 신뢰도 성장 모델과 비교되었다. 실험결과, 그룹 데이터에 대해 변형된 캐스케이드-상관 학습 알고리즘이 좋은 예측 결과를 나타내었다.

  • PDF

종속형 퍼지-뉴럴 네트워크를 이용한 풍력발전기 출력 예측 (Estimation of Wind Turbine Power Generation using Cascade Architectures of Fuzzy-Neural Networks)

  • 김성민;이동훈;장종인;원정철;강태호;임영근;한창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1098_1099
    • /
    • 2009
  • In this paper, we present the estimation of wind turbine power generation using Cascade Architectures of Fuzzy Neural Networks(CAFNN). The proposed model uses the wind speed average, the standard deviation and the past output power as input data. The CAFNN identification process uses a 10-min average wind speed with its standard deviation. The method for rule-based fuzzy modeling uses Gaussian membership function. It has three fuzzy variables with three modifiable parameters. The CAFNN's configuration has three Logic Processors(LP) that are constructed cascade architecture and an effective optimization method uses two-level genetic algorithm. First, The CAFNN is trained with one-day average input variables. Once the CAFNN has been trained, test data are used without any update. The main advantage of using CAFNN is having simple structure of system with many input variables. Therefore, The proposed CAFNN technique is useful to predict the wind turbine(WT) power effectively and hence that information will be helpful to decide the control strategy for the WT system operation and application.

  • PDF

눈동자를 이용한 사용자 인증기법 (A Scheme for User Authentication using Pupil)

  • 이재욱;강보선;이근호
    • 디지털융복합연구
    • /
    • 제14권9호
    • /
    • pp.325-329
    • /
    • 2016
  • 얼굴인증은 다양한 생체인증 중에서 거부감이 적고 변조가 어려워서 각광받고 있다. 얼굴인증의 알고리즘은 어떻게 알고리즘을 만드느냐에 따라서 정확성과 속도에 많은 차이를 가져온다. 눈동자를 추적 및 검출하여 얼굴의 검출 데이터와 함께 데이터를 추출함으로써 오탐률을 개선하고 정확하게 얼굴로 인증을 할 수 있도록 알고리즘을 연구하였다. Cascade를 통해서 얼굴을 검출하고 관심영역으로 지정 후 얼굴 영역을 균등하게 4등분하여 검출되는 객체의 좌표 값을 저장한다. 또한 검출된 눈에서 눈동자를 검출하기 위하여 이진화를 진행하고 Hough 변환을 통해 눈동자를 검출한다. 추출된 눈동자의 중심좌표를 저장하고 계산하여 데이터 매칭을 통해 얼굴 인증을 한다. 눈동자를 추적과 함께 얼굴의 데이터를 계산하여 정확하고 최적화된 얼굴인증 알고리즘을 연구한다.

플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현 (Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 2019
  • 플로팅 홀로그램은 광고나 콘서트와 같이 넓은 공간에서 현장감과 실존감이 뛰어난 3D 입체영상을 제공하면서, 3D 안경의 불편함, 시각적 피로, 공간 왜곡 현상 발생을 감소할 수 있는 기술이다. 따라서 본 논문은 좁은 공간에서도 사용가능한 플로팅 홀로그램 환경에서 캐릭터 조작을 위한 사용자 제스처 인식 시스템을 구현한다. 제안된 방법은 하르 특징기반의 캐시케이드((Harr feature-based cascade classifier) 분류기를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역을 기준으로 실시간으로 체스쳐 차영상으로부터 사용자 제스쳐의 발생 위치 정보를 이용하여 사용자 제스쳐를 인식한다. 그리고 각각 인식된 제스쳐 정보는 플로팅 홀로그램 환경에서 생성된 캐릭터 움직임을 조작하기 위하여 상응하는 행위에 맵핑된다. 제안된 플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템의 성능평가를 위해서는 플로팅 홀로그램 디스플레이 장치를 제작하고, 몸 흔들기, 걷기, 손 흔들기, 점프 등의 각 제스처에 따른 인식률을 반복 측정한 결과 평균 88%의 인식률을 보였다.

얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출 (Efficient Face Detection using Adaboost and Facial Color)

  • 채영남;정지년;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권7호
    • /
    • pp.548-559
    • /
    • 2009
  • Viola와 Jones가 제안한 에이다부스트 얼굴 검출기는 속도와 정확도면에서 매우 훌륭한 성능을 보이고 있는 얼굴 검출기이다. 하지만 에이다부스트 얼굴 검출기에도 여전히 오검출이 발생하며, 이를 줄이기 위해서는 더욱 많은 계산이 필요하다. 에이다부스트 얼굴 검출기는 흑백 영상만을 사용하므로, 색상정보를 사용하면 더 적은 연산으로 오검출율을 낮출 수 있다. 본 논문은 얼굴 색상 정보를 이용하여 대상 영상에서 부 윈도우를 효율적으로 검색하고, 에이다부스트 얼굴 검출기의 첫 단계에 계산속도가 매우 빠른 얼굴 색상을 이용한 얼굴/비얼굴 분류기를 채용하여 더 빠른 얼굴 검출 속도와 더 낮은 오검출율을 달성할 수 있는 단계별 얼굴 검출 모텔을 제안하였다. 얼굴색상 필터링을 위해 정의된 얼굴색상 소속함수를 이용하여 얼굴색상 필터 영상과 그 누적영상을 계산한다. 누적 영상에 의해 빠른 속도로 임의의 부 윈도우의 밀도를 계산할 수 있다. 제안된 검색 방법은 이 색상 밀도에 기반하여 얼굴일 가능성이 없는 부 윈도우들을 생략하게 된다. 그리고 부 윈도우의 밀도를 이용한 얼굴/비얼굴 분류기는 단계별 얼굴 검출기의 앞단에서 얼굴이 아닌 부 윈도우를 빠르게 거절한다. 제안된 얼굴 검출 모델은 적은 계산으로 오검출율을 낮출 수 있었으며, 실시간 얼굴 검출 속도를 비약적으로 향상시킬 수 있었다.

SET 상황에서 텔레스코픽 캐스코드 비교기에 관한 연구 (A Study on the Telescopic Cascode Comparator in SET Situation)

  • 장재석;정재필;박정철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.277-282
    • /
    • 2020
  • 본 연구는 전자장비가 여러 환경에 노출되어 장비 작동에 영향을 받을 수 있으므로 해소할 수 있는 방법을 찾고자 본 연구를 시작하였다. 텔레스코픽 캐스코드 비교기에 지수정류파(iexp)을 SET(Single Event Transient) 환경으로 설정하여 어떤 영향이 있는지에 대해 실험하였다. 본 논문에서 SET 상황을 설정하지 않은 텔레스코픽 캐스코드 비교기에서는 전파 지연은 0.46㎲, 이득은 0.713으로 측정되었다. SET 상황을 입력한 텔레스코픽 캐스코드 비교기에서 FET T0(M6)는 11㎲ ~ 15㎲에서 큰 스파이크를 나타난 것으로 측정되었다. FET T1(M5)는 10㎲ ~ 16㎲에서 출력 신호가 단락되었다. FET T2(M3)는 단락된 출력신호를 나타냈으며 FET T3(M4)는 큰 스파이크 파형 형태로 출력파형이 측정되었다. FET T4(M1)와 FET T5(M2)는 스파이크 신호가 출력되었다. 그리고 모든 FET에서 전파지연은 0.45㎲~0.54㎲로 변화되었다. 결론적으로 SET 상황에서 텔레스코픽 캐스코드 비교기에 있는 FET소자는 많은 영향을 받는 것으로 측정되었다.