• 제목/요약/키워드: influence parameter

검색결과 1,309건 처리시간 0.031초

다층 대칭배열된 타원형 적층관의 좌굴하중 및 모드해석 (Buckling Load and Mode Analysis of Symmetric Multi-laminated Cylinders with Elliptical Cross-section)

  • 천경식;손병직;지효선
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.457-464
    • /
    • 2006
  • 화이버로 보강된 복합재료는 비강성과 강도가 높을 뿐만 아니라 경량화를 위한 작업이 가능한 재료로써, 항공, 선박 그리고 토목분야와 같은 많은 산업분야에서 계속적으로 사용이 증대되고 있다. 본 연구는 전단변형을 고려한 타원단면을 갖는 복합적 층 구조물의 좌굴하중 및 모드형상을 분석하였다. 좌굴해석을 수행하기 위해, 면내회전자유도를 갖는 평면응력 요소와 휨 요소를 결합하여 무결점 4절점 쉘요소를 작성하였다. 이때 추가변형률과 대체전단변형률을 도입함으로써 요소의 거동을 개선하였다. 해석모델에 대해 쉘의 기하학적 형상, 종횡비, 화이버 보강각도, 그리고 적층배열에 따른 영향을 고찰하였다. 본 연구에서 제시한 타원단면을 갖는 적층관의 임계좌굴하중과 모드형상은 여러 가지 설계변수에 의한 거동에 대한 정확한 이해로부터 효율적인 설계방향을 제시하고자 하였으며, 추후 적층관의 좌굴해석시 좋은 참고자료로 활용할 수 있으리라 기대된다.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

익형 형상을 적용한 레저 선박용 안전 덕트 개발 (Designing of Safe Duct for Leisure Boat with Wing Section)

  • 박상준;김진욱;김문찬;진우석;정사교
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

슬래브 두께가 다른 다층지지 RC 구조 시스템에서의 슬래브 시공 하중 분포 (Slab Construction Load Distribution in a Multistory-shored RC Structure System with Different Slab Thickness)

  • 한상민;김재요
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권2호
    • /
    • pp.17-26
    • /
    • 2024
  • 최근 콘크리트 타설 중 구조체, 거푸집 및 동바리 사고가 계속해서 발생하고 있으며, 특히 슬래브 두께가 증가하는 다층지지 RC 구조에서 붕괴 사고가 빈번하게 발생하였다. 이전 연구에서는 모든 슬래브 두께가 일정한 경우에 대한 연구가 주로 수행되었으나 일부 슬래브의 두께가 다른 경우, 슬래브 단면 강성의 변화로 전체 슬래브 강성 비율이 달라져 시공 하중의 분포가 달라질 수 있어 이에 대한 연구가 요구된다. 이 연구에서는 슬래브 두께를 변수로 설정하여 슬래브 두께 변화가 콘크리트 강성과 구조물에 미치는 영향을 고려하여 시공 하중의 분포를 분석하였으며, 슬래브 두께가 변화하는 경우 콘크리트 재료 강성 뿐만이 아닌 슬래브 단면 강성도 시공 하중 산정에 고려되어야 함을 확인하였다. 슬래브 두께가 증가 할 경우 두께가 증가하는 층에 작용하는 최대 시공 하중과 최대 손상 변수는 크게 증가하였으며 두께 증가가 클수록 더욱 높은 비율의 시공 하중이 작용함을 확인하였다.

평활화 유한요소법을 도입한 응력기반 구배 탄성론 (A Stress-Based Gradient Elasticity in the Smoothed Finite Element Framework)

  • 이창계
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.187-195
    • /
    • 2024
  • 본 논문에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 응력 기반 구배 탄성론(Gradient elasticity)의 2차원 경계치 문제에 대한 연구를 수행하였다. 구배 탄성론은 기존 탄성론에서는 표현할 수 없는 미소규모의 크기 의존적인 기계적 거동을 설명하기 위해 제안되었다. 구배 탄성체론에서 고차 미분 방정식을 두 개의 2차 미분 방정식으로 분할하는 Ru-Aifantis 이론을 사용하기 때문에 평활화 유한요소법에 적용이 가능하게 된다. 본 연구에서 경계치 문제를 해결하기 위해 평활화 유한 요소 프레임워크에 스태거드 방식(Staggered scheme)을 사용하여 국부 변위장과 비국부 응력장을 평활화 영역 및 요소에서 각각 계산하였다. 구배 탄성에서 중요한 변수인 내부 길이 척도의 영향을 측정하기 위해 일련의 수치 예제를 수행하였다. 수치 해석 결과는 제안한 기법이 내부 길이 척도에 따라 균열 선단과 전위 선에 나타나는 응력 집중을 완화할 수 있음을 보여준다.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Experimental and numerical study on the earth pressure coefficient in a vertical backfilled opening

  • Jian Zheng;Li Li
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.217-229
    • /
    • 2024
  • Determining lateral earth pressure coefficient (EPC) K is a classic problem in geotechnical engineering. It is a key parameter for estimating the stresses in backfilled openings. For backfilled openings with rigid and immobile walls, some suggested using the Jaky's at-rest earth pressure coefficient K0 while other suggested taking the Rankine's active earth pressure coefficient Ka. A single value was proposed for the entire backfilled opening. To better understand the distributions of stresses and K in a backfilled opening, a series of laboratory tests have been conducted. The horizontal and vertical normal stresses at the center and near the wall of the opening were measured. The values of K at the center and near the wall were then calculated with the measured horizontal and vertical normal stresses. The results show that the values of K are close to Ka at the center and close to K0 near the wall. Furthermore, the experimental results show that the horizontal stress is almost the same at the center and near the wall, indicating a uniform distribution from the center to the wall. It can be estimated by analytical solutions using either Ka or K0. The vertical stress is higher near the center than near the wall. Its analytical estimation can only be done by using Ka at the center and K0 near the wall. Finally, the test results were used to calibrate a numerical model of FLAC2D, which was then used to analyze the influence of column size on the stresses and K in the backfilled opening.