• Title/Summary/Keyword: inflammatory genes

Search Result 575, Processing Time 0.031 seconds

The Beneficial Effect of Avocado on Skin Inflammation in a Mouse Model of AD-like Skin Lesions

  • Myung, Noh-Yil;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.705-713
    • /
    • 2019
  • Avocado, superfood, contains a variety of essential nutrients and phytochemicals. The purpose of this study was to explore whether avocado could modulate skin inflammation in vivo. We elucidated the pharmacological effects of avocado on compound 48/80- or histamine-induced scratching behaviors and 2, 4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions in mice. Additionally, we investigated the anti-inflammatory activity of avocado and its underlying mechanism including its effect on the expression levels of inflammatory-related genes and nuclear factor-κB (NF-κB) in DNCB-induced AD-like skin lesions. The findings of this study demonstrate that avocado attenuated AD-clinical symptoms including itching, eczematous, erythema and dryness and histamine levels in mice. Moreover, avocado suppressed both inflammatory cytokines expression as well as NF-κB and caspase-1 activation in AD-like skin lesions in mice. Taken together, these results demonstrate that avocado may be a potential candidate for treating skin inflammatory diseases like AD.

The Genetics and Pathogenesis of Inflammatory Bowel Disease (염증성 장질환의 유전학과 병인론)

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.sup2
    • /
    • pp.59-66
    • /
    • 2008
  • Genome-wide association studies using large case-control samples and several hundred thousand genetic markers efficiently and powerfully assay common genetic variations. The application of these studies to inflammatory bowel disease has led to the identification of susceptibility genes and affirmed the importance of innate and adaptive immunity in the pathogenesis of disease. Efforts directed towards the identification of environmental factors have implicated commensal bacteria as determinants of dysregulated immunity and inflammatory bowel disease. Host genetic polymorphisms most likely interact with functional bacterial changes to stimulate aggressive immune responses that lead to chronic tissue injury.

  • PDF

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Identification of differentially expressed genes using an annealing control primer system in periodontitis

  • Na, Hee-Sam;Kim, Ji-S.;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.109-114
    • /
    • 2012
  • In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In this study, we screened for differentially expressed genes (DEGs) in periodontitis compared with normal tissue using an annealing control primer (ACP) system. By ACP RT-PCR analysis, we obtained about 160 amplicons, 8 of which were found to be differentially expressed. DEGs in patients with periodontitis were thus successfully and reliably identified by the ACP-based RT PCR technique. The DEGs identified in the screen may also enhance our understanding of the pathogenesis of periodontitis.

Data Mining for Identification of Molecular Targets in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1691-1699
    • /
    • 2016
  • Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).

TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics

  • Faith Fore;Cut Indriputri;Janet Mamutse;Jusak Nugraha
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.21.1-21.10
    • /
    • 2020
  • TLRs are pattern recognition receptors (PRRs) whose cytoplasmic signalling domain is similar to that of IL-1. The extracellular domain of TLRs serve as the binding site of pathogen associated molecular patterns. TLRs are found on both plasma and endosomal membranes and they mainly exert their function by activating genes which lead to production of inflammatory factors. The latest TLR to be discovered, TLR10 is a unique TLR which exhibit anti-inflammatory properties. TLR10 is found on the plasma membrane with other TLRs namely TLR1, TLR2, TLR4, TLR5 and TLR6. Studies have revealed that TLR10 is found on the same gene cluster with TLR1 and TLR6 and is also a coreceptor of TLR2. Up to date, TLR10 is the only TLR which exhibit anti-inflammatory property. Previously, TLR10 was thought to be an "orphan receptor" but much recent studies have identified ligands for TLR10. Currently there is no review article on TLR10 that has been published. In this narrative review, we are going to give an account of TLR10, its functions mainly as an anti-inflammatory PRR and its possible applications as a target in therapeutics.

Quercetin Inhibits Inflammation Responses via MAPKs and NF-κB Signaling Pathways in LPS-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7 세포에서 MAPK와 NF-κB 경로를 통한 quercetin의 염증 반응 저해 활성)

  • Woo Young, Won;Jeong Tae, Kim;Keun Ho, Kim;Ji Young, Hwang;Chung-Wook, Chung;Jong Sik, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.899-907
    • /
    • 2022
  • Quercetin is one of bio-flavonoids which are abundant in fruits and vegetables and has been reported to have various pharmacological potentials such as anti-oxidation, anti-inflammation, anti-cancer, and anti-virus effects. In the present study, the anti-inflammatory effects and its working molecular mecha- nism of quercetin were investigated in mouse macrophage RAW264.7 cells. Quercetin significantly inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability and decreased inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 cells. In addition, quercetin decreased phosphorylation of p38, JNK, and ERK, and inhibited phosphorylation of NF-κB p65 protein and its inhibitor IκBα indicating that quercetin has the anti-inflammatory effects via regulation of MAPKs and NF-κB signaling pathway. We also detected expression changes of four kinds of pro-inflammatory cytokine genes (CSF2, IL-1β, IL-6, and TNF-α) with quantitative real-time PCR. The results showed that quercetin decreased the expression of four pro-inflammatory genes in LPS-stimulated RAW264.7 cells. Overall, our results showed that quercetin effectively suppressed inflammation responses induced by LPS in RAW264.7 cells via regulating MAPK and NF-κB pathway and down-regulating the expression of pro-inflammatory cytokine genes.

Anti-inflammatory Effects of Houttuynia cordata and Lespedeza cuneata on Lipopolysaccharide-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7에서 어성초와 야관문의 항염증 효과)

  • Jeong Tae Kim;Chungwook Chung;Seong Ik Park;Man Hyo Lee;Joong Hee Roh;Ho Yong Sohn;Jong Sik Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • In the present study, we prepared hot water extracts and the subsequent organic solvent fractions of methanol extracts of Houttuynia cordata (HC) and Lespedeza cuneata (LC), and investigated their anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells. Among the treated samples, hexane, chloroform, and ethyl-acetate fractions of HC and LC inhibited nitric oxide (NO) production in a dose-dependent manner, and decreased inducible nitric oxide synthase (iNOS) protein expression. And, we analyzed the flavonoid contents of the ethyl-acetate fraction of HC and LC, and chose apigenin for the further experiments because apigenin was one of flavonoids commonly found in HC and LC. Apigenin dramatically inhibited NO production in a dose-dependent manner without affecting cell viability and decreased iNOS and cyclooxygenase-2 (COX-2) expression. In addition, apigenin suppressed the phosphorylation of p38 and Jun N-terminal kinase (JNK) indicating that apigenin exerts anti-inflammatory activity via the mitogen-activated protein kinase (MAPK) signaling pathway. Subsequently, we conducted RNA-sequencing analysis to detect differentially expressed genes upon apigenin treatment. Among the down-regulated genes, four cytokine genes (interleukin (IL)-1α, IL-1β, IL-6, and colony stimulating factor 2 (CSF2)) were selected for the further analysis, and the reduction of their expression by apigenin was confirmed with quantitative real-time polymerase chain reaction. Overall, our results suggest that Houttuynia cordata and Lespedeza cuneata have the anti-inflammatory effects and apigenin can be the one of key molecules responsible for their anti-inflammatory activities.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.