• Title/Summary/Keyword: inflammatory cytokine

Search Result 1,575, Processing Time 0.021 seconds

Medicinal Herb Extracts Attenuate 1-Chloro-2,4dinitrobenzene-induced Development of Atopic Dermatitis-like Skin Lesions (한약재 단일 추출물 및 복합 추출물을 이용한 아토피성 피부염 억제 효과)

  • Lee, Moon Hee;Han, Min Ho;Yoon, Jung Jeh;Song, Myung Kyu;Kim, Min Ju;Hong, Su Hyun;Choi, Byung Tae;Kim, Byung Woo;Hwang, Hye Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.851-859
    • /
    • 2014
  • The present study was designed to investigate whether ethanol extracts of Sophora flavescens (GS), Glycyrrhiza uralensis (GC), Dictamnus dasycarpus (BSP), and their mixtures (GGB-1, -2, -3, and -4) inhibit 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) in a mouse model. DNCB was topically applied on the dorsal surface of Balb/c mice to induce AD-like skin lesions. The pathological phenotypes of AD, such as erythema, ear thickness, edema, scabs, and discharge, were significantly decreased in the GGB (DNCB + GS:GC:BSP = 3:1:1 mixture)-1-treated groups compared with the other treated groups. The weight of the spleen in immune organs was significantly decreased in the GGB-1-treated groups, whereas the weight of the liver in a control group was similar to that of the groups treated with the samples. Furthermore, toluidine blue staining analysis, a method used to specifically identify mast cells, showed that master cell infiltration into the dermis of the GGB-1-treated group was significantly decreased. The immunoglobulin E concentration was lower in the GGB-1-treated group. In addition, the levels of inflammatory cytokines (interferon-${\gamma}$, interleukin-1, 4, 5, 6, and 13, $1{\beta}$, and tumor necrosis factor-${\alpha}$) were also significantly reduced in the GGB-1-treated group. Taken together, these results suggest that a mixture of GS, GC, and BSP in a proportion of 3:1:1 (GGB-1) may contribute to the relief of AD symptoms and may be considered an excellent candidate for an AD therapeutic drug.

Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 in Acute Asthma (급성 천식환자에서 Vascular Endothelial Growth Factor와 Matrix Metalloproteinase-9)

  • Park, Kang-Seo;Jin, Hung-Yong;Choi, Eu-Gene;Lee, Heung-Bum;Rhee, Yang-Keun;Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.6
    • /
    • pp.530-539
    • /
    • 2001
  • Background : Bronchial asthma is an inflammatory disease of the airways that is associated with airway remodeling. The vascular endothelial growth factor (VEGF) is a potent, multifunctional cytokine that contributes to angiogenesis and inflammation. Matrix metalloproteinase-9 (MMP-9) is a major proteolytic enzyme that in duces bronchial remodeling in asthma. However, there is no data available on the possible role of the VEGF or on the potential relationship between the VEGF and MMP-9 in acute asthma. Therefore, the VEGF was studied to determine whether or not it participates in airway inflammation during acute asthma. An additional aim of this study was to determine whether or not the VEGF levels correlated with the MMP-9 levels in the sputum of acute asthma patients. Methods: Both the VEGF and MMP-9 levels were measured by an enzyme immunoassay and zymographic analysis in the sputum of patients with either stable asthma or with acute asthma. The VEGF and MMP-9 levels were also evaluated during a spontaneous asthma attack. Results : The VEGF levels were significantly higher in the sputum of acute asthmatic patients than in either the stable patients the control subjects. The VEGF levels in the sputum during asthma exacerbation were significantly higher than those on the remission days, and those levels decreased after asthma therapy. In acute asthmatic patients, the VEGF levels in the sputum correlated with the number of neutrophils and eosinophils. In addition, a significant correlation was established between the VEGF and MMP-9 levels in the sputum. Conclusion : These results suggest that VEGF overproduction is associated with airway inflammation during acute asthma and is related to the MMP-9 function.

  • PDF

In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88

  • Wan, Zhilin;Wang, Li;Chen, Zhuang;Ma, Xianyong;Yang, Xuefen;Zhang, Jian;Jiang, Zongyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1018-1025
    • /
    • 2016
  • Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase, $TNF-{\alpha}$, $IL-1{\beta}$ and COX-2 Expression by Flower and Whole Plant of Lonicera japonica (금은화(金銀花) 및 금은화전초(金銀花全草)가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, COX-2 및 cytokine에 미치는 영향)

  • Lee, Dong-Eun;Lee, Jae-Ryung;Kim, Young-Woo;Kwon, Young-Kyu;Byun, Sung-Hui;Shin, Sang-Woo;Suh, Seong-Il;Kwon, Taeg-Kyu;Byun, Joon-Seok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.481-489
    • /
    • 2005
  • Lonicerae Flos has antibacterial effects against Staphylococcus aureus, streptococci, pneumococci, Bacillus dysenterii, Salmonella typhi, and paratyphoid. It is an antiviral agent. The herb has a cytoprotective effect against $CCl_{4}-induced$ hepatic injury. It has antilipemic action, interfering with lipid absorption from the gut. Nowadays this herb is used mainly in the treatment of upper respiratory infections, such as tonsillitis and acute laryngitis. It is also used in the treatment of skin suppurations, such as carbuncles, and to treat viral conjunctivitis, influenza, pneumonia, and mastitis. Lonicerae Flos is dried flower buds of Lonicera japonica, L. hypoglauca, L. confusa, or L. dasystyla. But, for the most part, we use whole plant of Lonicera japonica, as a flower bud of it. And, little is known of the original copy of effects of whole plant, except for the 'Bon-Cho-Gang-Mok', which is written the effects of flower of Lonicera japonica are equal to effects of leaves and branch of it. The present study was conducted to evaluate the effect of flower and whole plant of Lonicera japonica on the regulatory mechanism of cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, flower and whole plant of Lonicera japonica water extracts inhibited nitric oxide production in a dose-dependent manner and abrogated iNOS and COX-2. Flower and whole plant of Lonicera japonica water extract did not affect on cell viability. To investigate the mechanism by which flower and whole plant of Lonicera japonica water extract inhibits iNOS and COX-2 gene expression, we examined the on phosphorylation of inhibitor ${\kappa}B{\alpha}$ and assessed production of $TNF-{\alpha}$, $interleukin-1{\beta}$ $(IL-1{\beta})$ and interleukin-6 (IL-6). Results provided evidence that flower and whole plant of Lonicera japonica inhibited the production of $IL-1{\beta}$, IL-6 and activated the phosphorylation of inhibitor ${\kappa}B{\alpha}$ in Raw 264.7 cells activated with LPS. These findings suggest that flower and whole plant of Lonicera japonica can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections, respectively.

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.