• Title/Summary/Keyword: inflammatory breast cancer

검색결과 80건 처리시간 0.028초

Elevated Serum Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratios Could be Useful in Lung Cancer Diagnosis

  • Kemal, Yasemin;Yucel, Idris;Ekiz, Kubilay;Demirag, Guzin;Yilmaz, Bahiddin;Teker, Fatih;Ozdemir, Meltem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2651-2654
    • /
    • 2014
  • Background: Lung cancer (LC) is still the primary cause of cancer deaths worldwide, and late diagnosis is a major obstacle to improving lung cancer outcomes. Recently, elevated preoperative or pretreatment neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and mean platelet volume (MPV) detected in peripheral blood were identified as independent prognostic factors associated with poor survival with various cancers, including colon cancer, esophageal cancer, gastric cancer and breast cancer. Objective: The aim of this study was to examine whether MPV, NLR and PLR could be useful inflammatory markers to differentiate lung cancer patients from healthy controls. An investigation was also made of the relationship between these markers and other prognostic factors and histopathological subgroups. Materials and Methods: Retrospectively eighty-one lung cancer patients and 81 age-sexes matched healthy subjects included into the study. Patients with hypertension, hematological and renal disease, heart failure, chronic infection, hepatic disorder and other cancer were excluded from the study. The preoperative or pretreatment blood count data was obtained from the recorded computerized database. Results: NLR and PLR values were significantly higher in the LC patients compared to the healthy subjects.( NLR: 4.42 vs 2.45 p=0.001, PLR: 245.1 vs 148.2 p=0.002) MPV values were similar in both groups (7.7 vs 7.8). No statistically significant relationship was determined between these markers (MPV, NLR and PLR) and histopathological subgroups and TNM stages. Conclusions: NLR and PLR can be useful biomarkers in LC patients before treatment. Larger prospective studies are required to confirm these findings.

Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231

  • Yu, Seon-Mi;Kim, Song-Ja
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.274-279
    • /
    • 2012
  • Thymoquinone (TQ), a drug extracted from the black seeds of Nigella sativa, has been shown to exhibit anti-inflammatory, anti-oxidant, and anti-neoplastic effects in numerous cancer cells. The effects of TQ on cyclooxygenase-2 (COX-2) expression and prostaglandin $E_2$ ($PGE_2$) production in MDA-MB-231, however, remain poorly understood. Western blot analysis and immunofluorescence staining were performed to study the expression levels of inflammation regulatory proteins in MDA-MB-231. $PGE_2$ assay was conducted to explore the TQ-induced production of $PGE_2$. In this study, we investigated the effects of TQ on COX-2 expression and $PGE_2$ production in MDA-MB-231. TQ significantly induced COX-2 expression and increased $PGE_2$ production in a dose-dependent manner, as determined by a Western blot analysis and $PGE_2$ assay. Furthermore, the activation of Akt and p38 kinase, respectively, was up-regulated in TQ treated cells. Inhibition of p38 kinase with SB203580 and PI3kinase (PI3K) with LY294002 abolished TQ-caused COX-2 expression and decreased $PGE_2$ production. These results collectively demonstrate that TQ effectively modulates COX-2 expression and $PGE_2$ production via PI3K and p38 kinase pathways in the human breast cancer cell line MDA-MB-231.

Potential Study Perspectives on Mechanisms and Correlations Between Adiposity and Malignancy

  • Lu, Kun;Song, Xiao-Lian;Han, Shi-Long;Wang, Chang-Hui;Zhong, Ni;Qi, Li-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.1057-1060
    • /
    • 2014
  • Adiposity is a well-recognized risk factor of type 2 diabetes and cardiovascular disease, and recently there is increasing evidence that excess body weight is an avoidable cause of cancer, including gastrointestinal, endometrial, esophageal adenocarcinoma, colorectal, postmenopausal breast, prostate, and renal malignancies. The mechanisms whereby adiposity is associated with tumor development remains not well understood. There are some most studied hypothesized mechanisms such as, high levels of insulin and free levels of insulin-like growth factors, sex hormones, adipocytokines, and inflammatory cytokines, adiposity-induced hypoxia, and so on. The potential mechanisms and conclusions in adiposity associated with increased risk for developing malignancy, and the underlying cellular and molecular mechanisms will be studied very well in the near future.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제20권3호
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

모유 수유와 멜라토닌 (Breastfeeding and Melatonin)

  • 송민유;박원서;유자연;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제36권3호
    • /
    • pp.133-145
    • /
    • 2018
  • Breastfeeding is highly recommended due to its benefits for both the infant and mother; however, most mothers predominantly use formula feed. Breastfeeding affords protection against a wide variety of medical conditions that may emerge at different time points over the lifespan, including hospital admissions for respiratory infections and neonatal fever, offspring childhood obesity, and cancer as well as cardiovascular disease, hyperlipidemia, hypertension, and diabetes. Moreover, breastfeeding is expected to decrease the risk of adolescent depression and other psychopathologies. It is also important for the development of the gut, gut-brain axis, and immune system, and night-time breast milk is likely to have higher antioxidant, anti-inflammatory, and immune regulatory effects due to the impact of breast milk melatonin on the infant's developing microbiome and gut permeability. Melatonin can be added to a night-time-specific formula feed; however, it is not included in the Korean Food Additive Codex.

구강내 연조직 전이암종의 임상적 연구 (A CLINICAL STUDY OF METASTATIC CARCINOMA TO ORAL SOFT TISSUE)

  • 박주용;김형섭;옥용주;송진아;이종호;김명진;최성원
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권4호
    • /
    • pp.346-349
    • /
    • 2005
  • Metastatic tumours to oral soft tissue are uncommon and accounts for approximately 1% of malignant oral neoplasms. Because of its rarity and clinical appearance of benign nature, the diagnosis of a metastatic lesion in the oral soft tissue may be challenging, both to clinicians and pathologists. We analyzed the clinical data of 9 patients who had metastatic carcinoma to oral soft tissues. The metastatic site to oral soft tissue was the gingiva in all cases. The most common primary site was lung (6 cases) followed by liver (2 cases) and breast (1 case). The clinical appearance resembled gingiva hyperplasia, pyogenic granuloma or gingival swelling. In one case, the metastatic gingiva lesion was found before detection of primary cancer. The mean survival time after diagnosis of metastatic lesion was 3 months. Although this metastatic lesion is rare, oral and maxillofacial surgeon should recognized that benign inflammatory lesion may be the metastatic malignant lesion or the first sign of undiagnosed underlying malignancy.

Ginsenoside Rg3의 항암효능 연구의 진보 (Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3)

  • 남기열;최재을;홍세철;표미경;박종대
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

WNT11 is a direct target of early growth response protein 1

  • Kim, JuHwan;Jung, Euitaek;Ahn, Sung Shin;Yeo, Hyunjin;Lee, Jeong Yeon;Seo, Jeong Kon;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.628-633
    • /
    • 2020
  • WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNFα) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNFα activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNFα-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNFα-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNFα-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNFα stimulation in breast cancer cells.

SUPPRESSION OF PHORBOL ESTER-INDUCED EXPRESSION OF CYCLLOOXYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE BY SELCTED CHEMOPREVENTIVE PHYTOCHEMICALS VIA DOWN-REGULATION OF NF-$\textsc{k}$B

  • Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 국제심포지움
    • /
    • pp.88.2-98
    • /
    • 2002
  • A wide arry of naturally occurring substances particularly those present in dietary and medicinal plants, have been reported to possess substantial cancer chemopreventive properties. Certain phytochemicals retain strong antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activities. Inducible cyclooxygenase(COX-2) and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. There is some evidence that expression of both COX-2 and iNOS is co-regulated by the eukaryotic transcription factor NF-$textsc{k}$B. Increased expression of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory diseases. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activies are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. An example is curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), that strongly occurring diaryl heptanoids structurally related to curcumin have substantial anti-tumor promotional activities in two-stage mouse skin carcinogenesis. Thus, yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3heptanone] and yakuchinone B [1-(4'-hydroxy-3'methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberacease) attenuate phorbol ester-induced inflammation and papilloma formation in female ICR mice. These diarylheptanoids also suppressed phorbol ester-induced activation of epdermal ornithine decarboxylase and its mRNA expression when applied onto shaven backs of mice. Yakuchinone A and B as well as curcumin inhibited phorbol ester-induced expression of COX-2 and iNOS and their mRNA in mouse skin via inactivation of NF-$textsc{k}$B. Capsaicin, a major pungent ingredient of red pepper also attenuated phorbol ester-induced NF-$textsc{k}$B activation. Similar suppression of COX-2 and iNOS and down-regulation of NF-$textsc{k}$B activation for its DNA binding were observed with the ginsenosied Rg3 and the ethanol extract of Artemisia asiatica. We have also found that certain anti-inflammatory phytochemicals exert inhibitory effects on phorbol ester-induced COX-2 expression and NF-$textsc{k}$B activation in immortalized human breast epithelial (MCF-10A) cells in culture. One of the plausible mechanisms undelying inhibition by aforementioned phytochemicals of phorbol ester-induced NF-$textsc{k}$B activation involves interference with degragation of the inhibitory unit, I$textsc{k}$Ba, which blocks subsequent nuclear translocation of the functionally active p65 subunit of NF-$textsc{k}$B. the activation of epidermal NF-$textsc{k}$B by phorbol ester and subsequent induction of COX-2 hence appear to play an important role in intracellular signaling pathwasy leading to tumor promotion and targeted inhibition of NF-$textsc{k}$B may provide a new promising cancer chemopreventive strategy.

  • PDF