• 제목/요약/키워드: infinite-layer superconductor

검색결과 6건 처리시간 0.016초

High pressure synthesis of the infinite-layer compounds Sr$_{0.9}$La$_{0.1}$CuO$_2$

  • Kim, J.Y.;Kim, Mun-Seog;Yao, Yu-Shu;Lee, Sung-Ik;Jung, C.U.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.128-131
    • /
    • 2000
  • We report high pressure synthesis of electron doped infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$. Structural and low-field magnetization study demonstrated that the superconducting quality of our samples were best among all kind of bulk samples reported until now. With these good samples, many new findings are under going by our collaborators and us.

  • PDF

Magnetic relaxation measurement of infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$

  • Kim, Heon-Jung;Kim, Mun-Seog;Cung, C.U.;Kim, Ji-Yeon;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.121-124
    • /
    • 2000
  • The time dependence of irreversible magnetization of grain aligned infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ was measured in temperature range of 2 K < T < 30 K for H= 0.5 T, 1.0 T and 1.5 T parallel to c-axis. From this, we calculated normalized flux creep rate S(T) ${\equiv}$ dlnM/dlnt and found that the temperature independent region in S(T) is significantly wide in comparision with other cuprate superconductors. Using the method of Maley et al., we also deduce the current density dependence of pinning potential and glassy exponent ${\mu}$.

  • PDF

Superconductivity of infinite layer cuprate

  • Lee, Sung-Ik;Jung, Chang-Wook;Kim, Ji-Yeon;Kim, Heon-Jung;Park, Min-Seok
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.1-1
    • /
    • 2000
  • The infinite layer compound $ACuO_2$, (A-Alkaline earth) consists of infinite stacking of $CuO_2$ planes separated only by alkaline earth ions. This compound attracted much attention because it contains only key ingredient of all cuprate high temperature superconductor; $CuO_2$ plane with controllable carrier concentration without charge reservoir block. High pressure synthesis method has been found to be preferable for this system due to its ability of doping various lanthanide ion into A site with larger superconducting volume fraction. But rigorous study on this rudimentary compound has been hindered by insufficient quality of sample. Especially superconductlng volume fraction was often too small to identify its origin. In this presentation, we report high pressure synthesis of $Sr_{0.9}Ln_{0.1}CuO_2$ (Ln=La, Sm). By controlling the heating temperature precisely during high pressure synthesis we could have superconductors with quite high superconducting volume fraction for this compound. The magnetic properties of the graln aligned samples show very different behavior compared to the cuprate high temperature superconductors. Details will be discussed.

  • PDF

무한층 초전도체 $Sr_{0.9}Ln_{0.1}CuO_2$(Ln=La, Gd, Sm)의 광학적 성질 (Optical Properties of Infinite-Layer Superconductors $Sr_{0.9}$$Ln_{0.1}$Cu$O_2$ (LnLa, Gd, Sm))

  • Mun, Mi-Ock;Park, Young-Sub;Kim, Kibum;Kim, Jae H.;A. B. Kuzmenko
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.13-16
    • /
    • 2001
  • We have measured the reflectivity of superconducting infinite-layer compounds $Sr_{0.9}$ $Ln_{0.1}$ Cu $O_2$ (Ln=La, Gd, Sm) with $T_{c}$ : 39 K using a Fourier-transform infrared spectrometer. We have identified the optical phonon modes from their infrared reflectivity and conductivity spectra and have proposed possible displacement patterns. The La- and the Gd-doped compounds exhibited only four ($2A_{2u}$ $+2E_{u}$) out of the five ($2A_{2u}$ $3E_{u}$) infrared-active phonons predicted by a group theoretical analysis whereas the Sm-doped compound exhibited all five modes. For the La-doped sample, we investigated the temperature dependence of the optical response functions in a wide temperature range of 7 - 300 K. In FIR region, the reflectivity is apparently enhanced below ~120 $cm^{-1}$ as temperature decreases across $T_{c}$. The value of $2$\Delta$/k_{B}$ $T_{c}$ is about 4.5, which is consistent with maximum gap value of d-wave $high- T_{c}$ cuprates.> c/ cuprates.uprates.s.

  • PDF