• Title/Summary/Keyword: infinite graphs

Search Result 28, Processing Time 0.024 seconds

KAZDAN-WARNER EQUATION ON INFINITE GRAPHS

  • Ge, Huabin;Jiang, Wenfeng
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1091-1101
    • /
    • 2018
  • We concern in this paper the graph Kazdan-Warner equation $${\Delta}f=g-he^f$$ on an infinite graph, the prototype of which comes from the smooth Kazdan-Warner equation on an open manifold. Different from the variational methods often used in the finite graph case, we use a heat flow method to study the graph Kazdan-Warner equation. We prove the existence of a solution to the graph Kazdan-Warner equation under the assumption that $h{\leq}0$ and some other integrability conditions or constrictions about the underlying infinite graphs.

CHARACTERIZATION THEOREMS FOR CERTAIN CLASSES OF INFINITE GRAPHS

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.245-252
    • /
    • 2012
  • In this paper we present a necessary and sufficient conditions for an infinite VAP-free plane graph to be a 3LV-graph as well as an LV-graph. We also introduce and investigate the concept of the order and the kernel of an infinite connected graph containing no one-way infinite path.

EXISTENCE OF SPANNING 4-SUBGRAPHS OF AN INFINITE STRONG TRIANGULATION

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.851-860
    • /
    • 2008
  • A countable locally finite triangulation is a strong triangulation if a representation of the graph contains no vertex- or edge-accumulation points. In this paper we exhibit the structure of an infinite strong triangulation and prove the existence of connected spanning subgraph with maximum degree 4 in such a graph

  • PDF

ROUGH ISOMETRY AND THE SPACE OF BOUNDED ENERGY FINITE SOLUTIONS OF THE SCHRODINGER OPERATOR ON GRAPHS

  • Kim, Seok-Woo;Lee, Yong-Hah;Yoon, Joung-Hahn
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.609-614
    • /
    • 2010
  • We prove that if graphs of bounded degree are roughly isometric to each other, then the spaces of bounded energy finite solutions of the Schr$\ddot{o}$dinger operator on the graphs are isomorphic to each other. This is a direct generalization of the results of Soardi [5] and of Lee [3].

QUASI m-CAYLEY STRONGLY REGULAR GRAPHS

  • Kutnar, Klavdija;Malnic, Aleksander;Martinez, Luis;Marusic, Dragan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1199-1211
    • /
    • 2013
  • We introduce a new class of graphs, called quasi $m$-Cayley graphs, having good symmetry properties, in the sense that they admit a group of automorphisms G that fixes a vertex of the graph and acts semiregularly on the other vertices. We determine when these graphs are strongly regular, and this leads us to define a new algebro-combinatorial structure, called quasi-partial difference family, or QPDF for short. We give several infinite families and sporadic examples of QPDFs. We also study several properties of QPDFs and determine, under several conditions, the form of the parameters of QPDFs when the group G is cyclic.

ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS

  • Guo, Jin;Wu, Tongsuo;Yu, Houyi
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.847-865
    • /
    • 2017
  • For a finite or an infinite set X, let $2^X$ be the power set of X. A class of simple graph, called strong Boolean graph, is defined on the vertex set $2^X{\setminus}\{X,{\emptyset}\}$, with M adjacent to N if $M{\cap}N={\emptyset}$. In this paper, we characterize the annihilating-ideal graphs $\mathbb{AG}(R)$ that are blow-ups of strong Boolean graphs, complemented graphs and preatomic graphs respectively. In particular, for a commutative ring R such that AG(R) has a maximum clique S with $3{\leq}{\mid}V(S){\mid}{\leq}{\infty}$, we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a complemented graph, if and only if R is a reduced ring. If assume further that R is decomposable, then we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a blow-up of a pre-atomic graph. We also study the clique number and chromatic number of the graph $\mathbb{AG}(R)$.

THE RANGE OF r-MAXIMUM INDEX OF GRAPHS

  • Choi, Jeong-Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1397-1404
    • /
    • 2018
  • For a connected graph G, an r-maximum edge-coloring is an edge-coloring f defined on E(G) such that at every vertex v with $d_G(v){\geq}r$ exactly r incident edges to v receive the maximum color. The r-maximum index $x^{\prime}_r(G)$ is the least number of required colors to have an r-maximum edge coloring of G. In this paper, we show how the r-maximum index is affected by adding an edge or a vertex. As a main result, we show that for each $r{\geq}3$ the r-maximum index function over the graphs admitting an r-maximum edge-coloring is unbounded and the range is the set of natural numbers. In other words, for each $r{\geq}3$ and $k{\geq}1$ there is a family of graphs G(r, k) with $x^{\prime}_r(G(r,k))=k$. Also, we construct a family of graphs not admitting an r-maximum edge-coloring with arbitrary maximum degrees: for any fixed $r{\geq}3$, there is an infinite family of graphs ${\mathcal{F}}_r=\{G_k:k{\geq}r+1\}$, where for each $k{\geq}r+1$ there is no r-maximum edge-coloring of $G_k$ and ${\Delta}(G_k)=k$.

A NEW EXTENSION OF BESSEL FUNCTION

  • Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.277-298
    • /
    • 2021
  • In this paper, we propose an extension of the classical Bessel function by means of our ℓ-hypergeometric function [2]. As the main results, the infinite order differential equation, the generating function relation, and contour integral representations including Schläfli's integral analogue are derived. With the aid of these, other results including some inequalities are also obtained. At the end, the graphs of these functions are plotted using the Maple software.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.