• Title/Summary/Keyword: inertial frame

Search Result 75, Processing Time 0.023 seconds

Omnidirectional Camera-based Image Rendering Synchronization System Using Head Mounted Display (헤드마운티드 디스플레이를 활용한 전방위 카메라 기반 영상 렌더링 동기화 시스템)

  • Lee, Seungjoon;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • This paper proposes a novel method for the omnidirectional camera-based image rendering synchronization system using head mounted display. There are two main processes in the proposed system. The first one is rendering 360-degree images which are remotely photographed to head mounted display. This method is based on transmission control protocol/internet protocol(TCP/IP), and the sequential images are rapidly captured and transmitted to the server using TCP/IP protocol with the byte array data format. Then, the server collects the byte array data, and make them into images. Finally, the observer can see them while wearing head mounted display. The second process is displaying the specific region by detecting the user's head rotation. After extracting the user's head Euler angles from head mounted display's inertial measurement units sensor, the proposed system display the region based on these angles. In the experimental results, rendering the original image at the same resolution in a given network environment causes loss of frame rate, and rendering at the same frame rate results in loss of resolution. Therefore, it is necessary to select optimal parameters considering environmental requirements.

A Time Synchronization Scheme for Vision/IMU/OBD by GPS (GPS를 활용한 Vision/IMU/OBD 시각동기화 기법)

  • Lim, JoonHoo;Choi, Kwang Ho;Yoo, Won Jae;Kim, La Woo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Recently, hybrid positioning system combining GPS, vision sensor, and inertial sensor has drawn many attentions to estimate accurate vehicle positions. Since accurate multi-sensor fusion requires efficient time synchronization, this paper proposes an efficient method to obtain time synchronized measurements of vision sensor, inertial sensor, and OBD device based on GPS time information. In the proposed method, the time and position information is obtained by the GPS receiver, the attitude information is obtained by the inertial sensor, and the speed information is obtained by the OBD device. The obtained time, position, speed, and attitude information is converted to the color information. The color information is inserted to several corner pixels of the corresponding image frame. An experiment was performed with real measurements to evaluate the feasibility of the proposed method.

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

New Guidance Filter Structure for Homing Missiles with Strapdown IIR Seeker

  • Kim, Tae-Hun;Kim, Jong-Han;Kim, Philsung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.757-766
    • /
    • 2017
  • For implementing the proportional navigation guidance law on passive homing missiles equipped with strapdown imaging infrared seekers, the line-of-sight angles and rates with respect to the inertial frame should be estimated by carefully handling the parasitic instability effect due to the seeker's latency. By introducing a new state vector representation along with the Pade approximation for compensating the time-delay of the seeker, this paper proposes a new guidance filter structure, stochastic dynamic models and measurement equations, in three-dimensional homing problem. Then, it derives the line-of-sight angle and rate estimator in general two-dimensional engagement by applying the extended Kalman filter to the proposed structure. The estimation performance and the characteristics of the proposed filter were evaluated via a series of numerical experiments.

A Robust Extended Filter Design for SDINS In-Flight Alignment

  • Yu, Myeong-Jong;Lee, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.520-526
    • /
    • 2003
  • In the case of a strapdown inertial navigation system (SDINS) with sizeable attitude errors, the uncertainty caused by linearization of the system degrades the performance of the filter. In this paper, a robust filter and various error models for the uncertainty are presented. The analytical characteristics of the proposed filter are also investigated. The results show that the filter does not require the statistical property of the system disturbance and that the region of the estimation error depends on a freedom parameter in the worst case. Then, the uncertainty of the SDINS is derived. Depending on the choice of the reference frame and the attitude error state, several error models are presented. Finally, various in-flight alignment methods are proposed by combining the robust filter with the error models. Simulation results demonstrate that the proposed filter effectively improves the performance.

Forced Vibration Analysis of the Hard Disk Drive Spindle Systems (하드디스크 드라이브 회전축계의 강제진동해석)

  • Lim, Seung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1601-1608
    • /
    • 2000
  • This paper is concerned with the forced flexural vibration analysis of hard disk drive (HDD) spindle systems with multiple thin disks, supported by two ball bearings based on the finite element model. This is the extension of the previous work which analytically modeled every system component taking into account its structural flexibility and also the centrifugal stiffening effect especially for the disks. Among the end results, the forced time response is expectedly useful for the vibration control of the spindle itself or the position servo control of the magnetic head. On the other hand, the steady state responses such as the frequency response function and the unbalance response are useful for system identification. Futhermore, through a coordinate transformation the equations of motion is also derived with respect to the inertial frame for convenient analyses of certain classes.

  • PDF

Adaptive intermittent maneuvers for intercept performance improvement of homing missile with passive seeker (수동형 탐색기를 장착한 호우밍 미사일의 요격성능 향상을 위한 적응 단속 기동)

  • Tark, Min-Jea;Ryu, Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.469-474
    • /
    • 1990
  • The implementation of modern guidance law derived from optimal control theory requires accurate current states of target, for example, position, velocity and acceleration etc. But there is no sensors that measure the target states directly. So they are estimated from measurable data. For atmospheric missile engagement, direct application of the modern guidance laws may result In deterioration of Intercept performance because of poor observability associated with angles only-measurements by passive seeker and homing geometry. In this paper, a trajectory modulation method called "adaptive Intermittent maneuvers" is added to the modern guidance law, so the observability is enhanced and, consequently, improved the intercept performance. The estimation algorithm called "modified gain pseudo-measurement filter" is used for tracking filter. It is assumed that the passive seeker measure the angles between line of sight and Inertial frame. The Monte-Carlo simulation for realistic air-to-air Intercept scenario are conducted to demonstrate the effectiveness of intermittent maneuvers.ermittent maneuvers.

  • PDF

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

A User Interface for Vision Sensor based Indirect Teaching of a Robotic Manipulator (시각 센서 기반의 다 관절 매니퓰레이터 간접교시를 위한 유저 인터페이스 설계)

  • Kim, Tae-Woo;Lee, Hoo-Man;Kim, Joong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.921-927
    • /
    • 2013
  • This paper presents a user interface for vision based indirect teaching of a robotic manipulator with Kinect and IMU (Inertial Measurement Unit) sensors. The user interface system is designed to control the manipulator more easily in joint space, Cartesian space and tool frame. We use the skeleton data of the user from Kinect and Wrist-mounted IMU sensors to calculate the user's joint angles and wrist movement for robot control. The interface system proposed in this paper allows the user to teach the manipulator without a pre-programming process. This will improve the teaching time of the robot and eventually enable increased productivity. Simulation and experimental results are presented to verify the performance of the robot control and interface system.

Wide-Range Mapping Methodology for Unmanned Ground Vehicle Based on DGPS (무인자율차량 적용을 위한 DGPS 기반 전역지도 작성기법)

  • Shon, Woong-Hee;Yu, Seung-Nam;Kim, Young-Il;Han, Chang-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • This study shows the path generation algorithm for an UGV (Unmanned Ground Vehicle). The developed UGV frame which has a 4-wheel driven mechanism and diesel source is applied. Proposed vehicle system in this research is aimed to military purpose. To achieve the unmanned autonomous driving, following two main issues are considered. First, behavior module for positioning and posture of vehicle system and second, cognition module to receive the information from environment are proposed and verified. To do this, rover which can acquire the positioning information from earth coordinate and IMU (Inertial Measurement Unit) which can measure the posture are combined to design the path planning algorithm.

  • PDF