• Title/Summary/Keyword: inertial current

Search Result 75, Processing Time 0.028 seconds

Vibration-Robust Adaptive Attitude Reference System Using Sequential Measurement Noise Covariance (진동환경에 강인한 순차적 측정 오차 공분산값을 이용한 적응 자세 결정)

  • Kim, Jongmyeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • A new technique for Attitude & Heading Reference System (AHRS) by using sequential measurement noise covariance (SMNC) is addressed in a vibration environments in this paper. In particular, a low-cost inertial measurement unit in general diverges in the acceleration phase or vibrating environments due to inherent properties of gravity and acceleration. In this paper, by considering current and prior measurements to estimate actual attitudes and headings in a local frame, the proposed technique overcomes these problems efficiently. Finally, the performance of the suggested approach is verified by numerical simulations.

Egocentric Vision for Human Activity Recognition Using Deep Learning

  • Malika Douache;Badra Nawal Benmoussat
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.730-744
    • /
    • 2023
  • The topic of this paper is the recognition of human activities using egocentric vision, particularly captured by body-worn cameras, which could be helpful for video surveillance, automatic search and video indexing. This being the case, it could also be helpful in assistance to elderly and frail persons for revolutionizing and improving their lives. The process throws up the task of human activities recognition remaining problematic, because of the important variations, where it is realized through the use of an external device, similar to a robot, as a personal assistant. The inferred information is used both online to assist the person, and offline to support the personal assistant. With our proposed method being robust against the various factors of variability problem in action executions, the major purpose of this paper is to perform an efficient and simple recognition method from egocentric camera data only using convolutional neural network and deep learning. In terms of accuracy improvement, simulation results outperform the current state of the art by a significant margin of 61% when using egocentric camera data only, more than 44% when using egocentric camera and several stationary cameras data and more than 12% when using both inertial measurement unit (IMU) and egocentric camera data.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Analysis of electron emission mechanism in surface conduction electron emission displays (표면전도 전자방출 표시장치의 전자방출 구조해석)

  • 김영삼;김영권;오현주;조대근;길도현;김대일;강준길;강승언;최은하
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.410-416
    • /
    • 1999
  • It is confirmed that the cause of anode current in SEDs (surface conduction electron emission displays) is the inertial force of electron emitted from the cathode surface in the calculation of electron trajectory. In the fissure of sub-micron, most of electrons emitted from the area of the cathode edge flow into the coplanar anode, while some electrons are emitted into the display surface by the current ratio of $10^{-3}$. The later electrons are forced to fly into the display surface by the centrifugal force due to the curved electric field between top side surfaces near the fissure.

  • PDF

Electron Emission Mechanism in the Surface Conduction Electron Emitter Displays

  • Cho, Guang-Sup;Choi, Eun-Ha;Kim, Young-Guon;Kim, Dai-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.139-140
    • /
    • 2000
  • The origin of the display current in the surface conduction electron emitter displays has been verified in the calculation of the electron trajectory. Some electrons move directly toward the display surface as an anode current which is generated due to the inertial force of electron motion along the curved electric field lines with a small curvature near the fissure area..

  • PDF

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

Some High-Frequency Variability of Currents Obtained by "GeoDrifters" in the Tsushima Current Region

  • Seung, Young Ho;Park, Jong Jin;Kwon, Young-Yeon;Kim, Sung-Joon;Kim, Hong-Sun;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • The "GeoDrifter" is a newly-developed surface drifter with high temporal resolution. It is the first time that high-frequency drifters have been deployed in the East/Japan Sea. The purpose of this study is to introduce the phenomena experienced by these drifters flowing along with the Tsushima Current across the East/Japan Sea, focusing on high-frequency variability, and to discuss them in comparison with previous observations. The observed basin-scale circulation of the Tsushima Current generally coincides well with the known schematic circulation. The GeoDrifter trajectories also show inertial oscillations almost everywhere in the oceanic regions of the East/Japan Sea, strong semi-diurnal tidal currents in the western part of Korea Strait, diurnal currents much stronger than semi-diurnal currents in the upstream region of the Nearshore Branch off the Japanese coast, and many warm eddies in the Yamato Basin, all comparable to the observational results reported in the previous studies. An interesting point is that the semi-diurnal tidal currents undergo a great spatial variation in the western part of the Korea Strait. The observed features that cannot be explained are, among others, strong counter-clockwise motions with oscillating period about 51 hours appearing in the upstream region of the Nearshore Branch off the Japanese coast and the different tidal behaviors between upstream and downstream regions of the latter.

Recent Development Trends of Fiber Optic Gyroscope in Space Application (우주용 광섬유자이로 개발동향)

  • Jung, Dong-Won;Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.76-85
    • /
    • 2010
  • This paper discusses recent development trends of fiber optic gyroscope (FOG) in space application. Fiber optic gyroscope utilizes Sagnac effect to measure the angular rate of a rotating object in space. Having a rather short development history compared to ring laser gyroscope (RLG), the fiber optic gyroscope, owing to the emerging technologies in fiber optic society and the digital signal processing technique, reveals itself as a noteworthy replacement of the ring laser gyroscope in the space mission. This paper summarizes the current trends of fiber optic gyroscope based on the actual products commercialized in the market over the last decades, while presenting the future development trends of the fiber optic gyroscope in the space exploration.

  • PDF

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.