• 제목/요약/키워드: inelastic structure

검색결과 332건 처리시간 0.023초

Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil

  • Fatahi, Behzad;Tabatabaiefar, S. Hamid Reza;Samali, Bijan
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.293-320
    • /
    • 2014
  • In this study, in order to evaluate adequacy of considering local site effect, excluding soil-structure interaction (SSI) effects in inelastic dynamic analysis and design of mid-rise moment resisting building frames, three structural models including 5, 10, and 15 storey buildings are simulated in conjunction with two soil types with the shear wave velocities less than 600 m/s, representing soil classes $D_e$ and $E_e$ according to the classification of AS1170.4-2007 (Earthquake actions in Australia) having 30 m bedrock depth. Structural sections of the selected frames were designed according to AS3600:2009 (Australian Standard for Concrete Structures) after undertaking inelastic dynamic analysis under the influence of four different earthquake ground motions. Then the above mentioned frames were analysed under three different boundary conditions: (i) fixed base under direct influence of earthquake records; (ii) fixed base considering local site effect modifying the earthquake record only; and (iii) flexible-base (considering full soil-structure interaction). The results of the analyses in terms of base shears and structural drifts for the above mentioned boundary conditions are compared and discussed. It is concluded that the conventional inelastic design procedure by only including the local site effect excluding SSI cannot adequately guarantee the structural safety for mid-rise moment resisting buildings higher than 5 storeys resting on soft soil deposits.

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

비탄성 설계 스펙트럼에 의한 이력 모델의 효과 (Effect of Hysteretic Models on the Inelastic Design Spectra)

  • 한상환;오영훈;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF

5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석 (Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF)

  • 강석봉;임병진
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode

  • Li, Shen;Tian, Jian-bo;Liu, Yun-he
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.443-454
    • /
    • 2017
  • When eccentrically braced steel frames (EBFs) are in the desired failure mode, links yield at each layer and column bases appear plastically hinged. Traditional design methods cannot accurately predict the inelastic behavior of structures owing to the use of capacity-based design theory. This paper proposes the use of performance-based seismic design (PBSD) method for planning eccentrically braced frames. PBSD can predict and control inelastic deformation of structures by target drift and failure mode. In buildings designed via this process, all links dissipate energy in the rare event of an earthquake, while other members remain in elastic state, and as the story drift is uniform along the structure height, weak layers will be avoided. In this condition, eccentrically braced frames may be more easily rehabilitated after the effects of an earthquake. The effectiveness of the proposed method is illustrated through a sample case study of ten-story K-type EBFs and Y- type EBFs buildings, and is validated by pushover analysis and dynamic analysis. The ultimate state of frames designed by the proposed method will fail in the desired failure mode. That is, inelastic deformation of structure mainly occurs in links; each layer of links involved dissipates energy, and weak layers do not exist in the structure. The PBSD method can provide a reference for structural design of eccentrically braced steel frames.

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

선형탄성해석 및 비선형비탄성해석을 이용한 LRFD 설계법의 비교 연구 (A Comparative Study of LRFD Methods Using Linear Elastic and Nonlinear Inelastic Analysis)

  • 장은석;박정웅;김승억
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.633-642
    • /
    • 2007
  • 하중저항계수설계법(LRFD)은 종래 설계법의 결점을 개선한 설계법임에도 불구하고 구조계와 개별부재간에 강도와 안정에 대한 상호작용을 정확하게 고려하지 못하고 있다. 이러한 문제를 해결하기 위해서는 전체 구조물의 비선형비탄성해석을 수행하여야 한다. 현재 여러 선진국의 설계기준에서는 구조물의 거동과 강도를 합리적으로 예측하기 위하여 비선형비탄성해석을 사용할 수 있도록 하고 있다. 본 연구에서는 구조시스템의 내하력을 정확히 파악할 수 있는 실용적인 비선형비탄성해석법을 이용한 LRFD 설계법을 제안하였다. 실무에 사용하기 위한 설계 형식, 모델링 시 고려사항 및 설계 시 고려사항에 대하여 기술하였다. 또한 제안된 방법을 사용하여 다양한 예제설계를 수행하였고 AISC-LRFD의 선형탄성해석을 이용한 설계결과와 소요 물량을 비교함으로서 그 경제성과 타당성을 검토하였다. 그 결과 제안된 LRFD설계법은 기존의 LRFD에 비해 구조물의 종류에 따라 최대 24%의 강재 절감효과를 얻을 수 있는 경제적인 설계방법임을 입증하였다.

Performance-based design of tall buildings for wind load and application of response modification factor

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.153-164
    • /
    • 2020
  • In the design of buildings, lateral loading is one of the most important factors considered by structural designers. The concept of performance-based design (PBD) is well developed for seismic load. Whereas, wind design is mainly based on elastic analysis for both serviceability and strength. For tall buildings subject to extreme wind load, inelastic behavior and application of the concept of PBD bear consideration. For seismic design, current practice primarily presumes inelastic behavior of the structure and that energy is dissipated by plastic deformation. However, due to analysis complexity and computational cost, calculations used to predict inelastic behavior are often performed using elastic analysis and a response modification factor (R). Inelastic analysis is optionally performed to check the accuracy of the design. In this paper, a framework for application of an R factor for wind design is proposed. Theoretical background on the application and implementation is provided. Moreover, seismic and wind fatigue issues are explained for the purpose of quantifying the modification factor R for wind design.

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.

보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석 (Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint)

  • 강석봉;김태용
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.517-524
    • /
    • 2012
  • 이 논문에서는 푸쉬오버해석을 통해 보-기둥 접합부 비탄성 전단거동과 고차모드를 고려한 횡하중 수직분포 형태가 구조물 거동에 미치는 영향을 알아보기 위해 지반조건 $S_B$ 내진설계범주 C에 대해서 5층 철근콘크리트 보통모멘트골조를 KBC2009에 맞게 구조설계 하였다. 보 및 기둥 부재의 휨모멘트-곡률 관계는 섬유모델(fiber model)로 확인하였으며 보-기둥 접합부 모멘트-회전각 관계는 simple and unified joint shear behavior model과 보-기둥 접합부 모멘트 평형관계를 이용하여 확인하였다. 푸쉬오버해석 결과 보-기둥 접합부를 강체로 고려하는 경우 구조물의 강성도 및 강도가 과대평가 되었으나 반응수정계수는 접합부 비탄성거동과 관계없이 KBC2009 보통모멘트골조 계수를 만족하여 구조 설계 과정에서 보-기둥 접합부의 비탄성 전단거동을 고려하지 않아도 문제가 없을 것으로 판단된다.