• 제목/요약/키워드: inelastic steel structure

검색결과 110건 처리시간 0.021초

P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가 (Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects)

  • 최원호;이주완;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

Identifying the hysteretic energy demand and distribution in regular steel frames

  • Akbas, Bulent;Shen, Jay;Temiz, Hakan
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.479-491
    • /
    • 2006
  • Structures in seismic regions are designed to dissipate seismic energy input through inelastic deformations. Structural or component failure occurs when the hysteretic energy demand for a structure or component subject to an earthquake ground motion (EQGM) exceeds its hysteretic energy dissipation capacity. This paper presents a study on identifying the hysteretic energy demand and distribution throughout the height of regular steel moment resisting frames (SMRFs) subject to severe EQGMs. For this purpose, non-linear dynamic time history (NDTH) analyses were carried out on regular low-, medium-, and high-rise steel SMRFs. An ensemble of ninety EQGMs recorded on different soil types was used in the study. The results show that the hysteretic energy demand decreases from the bottom stories to the upper stories and for high-rise structures, most of the hysteretic energy is dissipated by the bottom stories. The decrease is quite significant, especially, for medium- and high-rise structures.

Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective

  • Matta, Emiliano
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.73-91
    • /
    • 2015
  • The effectiveness of tuned mass dampers (TMDs) in reducing the seismic response of civil structures is still a debated issue. The few studies regarding TMDs on inelastic structures indicate that they would perform well under moderate earthquake loading, when the structure remains linear or weakly nonlinear, while tending to fail under severe ground shaking, when the structure experiences strong nonlinearities. TMD seismic efficiency should be therefore rationally assessed by considering to which extent moderate and severe earthquakes respectively contribute to the expected cost of damages and losses over the lifespan of the structure. In this paper, a method for evaluating, in a life-cycle cost (LCC) perspective, the seismic effectiveness of TMDs on inelastic building structures is presented and exemplified on the SAC LA 9-storey steel moment-resisting frame benchmark building. Results show that the LCC concept may provide an appropriate alternative to traditional performance criteria for the evaluation of the effectiveness of TMDs and that TMD installation on typical existing middle-rise buildings in high seismic hazard regions may significantly reduce building lifetime cost despite the poor control performance observed under the most severe seismic events.

지진에 대한 강구조물의 피로손상도 추정법 (Fatigue Damage Assessment for Steel Structures Subjected to Earthquake)

  • 송종걸;윤정방;이동근
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

기계학습 기반 강 구조물 지진응답 예측기법 (Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Design of MR dampers to prevent progressive collapse of moment frames

  • Kim, Jinkoo;Lee, Seungjun;Min, Kyung-Won
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.291-306
    • /
    • 2014
  • In this paper the progressive collapse resisting capacity of steel moment frames with MR dampers is evaluated, and a preliminary design procedure for the dampers to prevent progressive collapse is suggested. Parametric studies are carried out using a beam-column subassemblage with varying natural period, yield strength, and damper force. Then the progressive collapse potentials of 15-story steel moment frames installed with MR dampers are evaluated by nonlinear dynamic analysis. The analysis results of the model structures showed that the MR dampers are effective in preventing progressive collapse of framed structures subjected to sudden loss of a first story column. The effectiveness is more noticeable in the structure with larger vertical deflection subjected to larger inelastic deformation. The maximum responses of the structure installed with the MR dampers designed to meet a given target dynamic response factor generally coincided well with the target value on the conservative side.