• 제목/요약/키워드: inelastic steel structure

검색결과 110건 처리시간 0.022초

이상 스테인리스강의 변형거동에 미치는 질소의 영향 (Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel)

  • 이형직;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.284-289
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied. The variation of strength was correlated with the characteristic microstructures pertaining to nitrogen. Analysis based on Hall-fetch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism. It has been verified in this study that the higher nitrogen content provides a dual-phase microstructure with smaller strength difference between austenite and ferrite resulting into the earlier transfer of inelastic deformation from austenite to ferrite.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

이상 스테인레스강의 변형거동에 미치는 질소의 영향 (Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel)

  • 이형직;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.49-52
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied The variation of strength was correlated with the characteristic microstructures. Analysis based on Hall-Petch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces, and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism.

  • PDF

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

Nonlinear control of a 20-story steel building with active piezoelectric friction dampers

  • Chen, Chaoqiang;Chen, Genda
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.21-38
    • /
    • 2002
  • A control algorithm combining viscous and non-linear Reid damping mechanisms has been recently proposed by the authors to command active friction dampers. In this paper, friction dampers and the proposed algorithm are applied to control the seismic responses of a nonlinear 20-story building. Piezoelectric stack actuators are used to implement the control algorithm. The capacity of each damper is determined by the practical size of piezoelectric actuators and the availability of power supply. The saturation effect of the actuators on the building responses is investigated. To minimize the peak story drift ratio or floor acceleration of the building structure, a practical sequential procedure is developed to sub-optimally place the dampers on various floors. The effectiveness of active friction dampers and the efficiency of the proposed sequential procedure are verified by subjecting the building structure to four earthquakes of various intensities. The performance of 80 dampers and 137 dampers installed on the structure is evaluated according to 5 criteria. Numerical simulations indicated that the proposed control algorithm effectively reduces the seismic responses of the uncontrolled 20-story building, such as inelastic deformation. The sub-optimal placement of dampers based on peak acceleration outperforms that based on peak drift ratio for structures subjected to near-fault ground motions. Saturation of piezoelectric actuators has adverse effect on floor acceleration.

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

새로운 접합상세를 가진 단층 래티스 돔의 비탄성 거동에 관한 실험연구 (Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome with New Connection)

  • 김명한;오명호;정승열;김상대
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.145-154
    • /
    • 2009
  • 이 논문에서는 새롭게 제안된 접합부를 적용한 단층 래티스 돔의 비탄성 거동에 대해 실험적으로 분석하였다. 구조적인 성능과 시공성을 모두 만족시키기 위해서 제안된 새로운 접합부를 적용하여 강관으로 구성된 스팬 7m의 단층 래티스 돔의 축소실험모델을 제작하였으며, 각 절점에 균일한 하중이 가력되도록 하중전이장치를 이용하여 정적재하실험을 수행하였다. 최대가력하중은 1,114kN이었고, 일부 접합부의 항복 이후에 강관부재의 좌굴이 발생하였다. 강관부재의 좌굴발생 이후에는 가력장치가 허용할 수 있는 변위까지 실험을 수행하였으며, 실험을 통해서 구해진 단층 래티스 돔의 비탄성거동을 하중 단계별로 분석하였다.

매개변수에 따른 기둥축소량 변화에 관한 연구 (Variations of Column Shortening with Parameters)

  • 정은호;김형래
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.