• Title/Summary/Keyword: inelastic seismic response

Search Result 222, Processing Time 0.023 seconds

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.

Inelastic seismic response of adjacent buildings linked by fluid dampers

  • Xu, Y.L.;Yang, Z.;Lu, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.513-534
    • /
    • 2003
  • Using fluid dampers to connect adjacent buildings for enhancing their seismic resistant performance has been recently investigated but limited to linear elastic adjacent buildings only. This paper presents a study of inelastic seismic response of adjacent buildings linked by fluid dampers. A nonlinear finite element planar model using plastic beam element is first constructed to simulate two steel frames connected by fluid dampers. Computed linear elastic seismic responses of the two steel frames with and without fluid dampers under moderate seismic events are then compared with the experimental results obtained from shaking table tests. Finally, elastic-plastic seismic responses of the two steel frames with and without fluid dampers are extensively computed, and the fluid damper performance on controlling inelastic seismic response of the two steel frames is assessed. The effects of the fundamental frequency ratio and structural damping ratio of the two steel frames on the damper performance are also examined. The results show that not only in linear elastic stage but also in inelastic stage, the seismic resistant performance of the two steel frames of different fundamental frequencies can be significantly enhanced if they are properly linked by fluid dampers of appropriate parameters.

Parameters affecting the seismic response of buildings under bi-directional excitation

  • Fontara, Ioanna-Kleoniki M.;Kostinakis, Konstantinos G.;Manoukas, Grigorios E.;Athanatopoulou, Asimina M.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.957-979
    • /
    • 2015
  • The present paper investigates the influence of the orientation of the ground-motion reference axes, the seismic incident angle and the seismic intensity level on the inelastic response of asymmetric reinforced concrete buildings. A single storey asymmetric building is analyzed by nonlinear dynamic analyses under twenty bi-directional ground motions. The analyses are performed for many angles of incidence and four seismic intensity levels. Moreover three different pairs of the horizontal accelerograms corresponding to the input seismic motion are considered: a) the recorded accelerograms, b) the corresponding uncorrelated accelerograms, and c) the completely correlated accelerograms. The nonlinear response is evaluated by the overall structural damage index. The results of this study demonstrate that the inelastic seismic response depends on the orientation of the ground-motion reference axes, since the three individual pairs of accelerograms corresponding to the same ground motion (recorded, uncorrelated and completely correlated) can cause different structural damage level for the same incident angle. Furthermore, the use of the recorded accelerograms as seismic input does not always lead to the critical case of study. It is also shown that there is not a particular seismic incident angle or range of angles that leads to the maximum values of damage index regardless of the seismic intensity level or the ground-motion reference axes.

Effect of Hysteretic Models on the Inelastic Design Spectra (비탄성 설계 스펙트럼에 의한 이력 모델의 효과)

  • 한상환;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF

Seismic response control of elastic and inelastic structures by using passive and semi-active tuned mass dampers

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • In this study, the performances of a passive tuned mass damper (TMD) and a semi-active TMD (STMD) were evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for damped structures with a passive TMD and with a STMD proposed in this study. The displacement spectra confirmed that the STMD provided much better control performance than passive TMD and the STMD had less stroke requirement. Also, the robustness of the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of hysteresis described by the Bouc-Wen model. The results indicated that the performance of the passive TMD whose design parameters were optimized for an elastic structure considerably deteriorated when the hysteretic portion of the structural responses increased, and that the STMD showed about 15-40% more response reduction than the TMD.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

Evaluation of Seismic Performance for Bridge Structure Using Capacity Spectrum Method (역량스펙트럼법을 이용한 교량의 내진성능평가)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-80
    • /
    • 2000
  • Evaluation method of seismic performance has mainly used elastic spectrum analysis. This method has simplicity of analysis but deficiency of accuracy. And evaluation method of seismic performance using inelastic dynamic analysis reflects accurately inelasticity of material but hardly reflects site effects. This study suggested evaluation scheme of seismic performance for bridge structure using capacity spectrum method applied inelastic static analysis and standard design response spectrum of Korea Standard Specification for Highway Bridge. Two results, capacity spectrum method and inelastic dynamic analysis method, are very similar. As a result, this study appropriately supply both simplicity of analysis and accuracy of result.

  • PDF

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.

Performance-based design of tall buildings for wind load and application of response modification factor

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.153-164
    • /
    • 2020
  • In the design of buildings, lateral loading is one of the most important factors considered by structural designers. The concept of performance-based design (PBD) is well developed for seismic load. Whereas, wind design is mainly based on elastic analysis for both serviceability and strength. For tall buildings subject to extreme wind load, inelastic behavior and application of the concept of PBD bear consideration. For seismic design, current practice primarily presumes inelastic behavior of the structure and that energy is dissipated by plastic deformation. However, due to analysis complexity and computational cost, calculations used to predict inelastic behavior are often performed using elastic analysis and a response modification factor (R). Inelastic analysis is optionally performed to check the accuracy of the design. In this paper, a framework for application of an R factor for wind design is proposed. Theoretical background on the application and implementation is provided. Moreover, seismic and wind fatigue issues are explained for the purpose of quantifying the modification factor R for wind design.